Skip to main content

Transonic flow in ducts and nozzles; a survey

  • Conference paper
Symposium Transsonicum

Abstract

No other aspect of transonic flow has been the subject of serious study for nearly so long as that of the flow in ducts and nozzles. It is remarkable that the essential features of steady accelerating one- dimensional gas flow at speeds up to and beyond the speed of sound had been well described and understood by the end of the 19th century, before the rapid development of modern fluid mechanics had begun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Navier, C. L. M. H.: Paris, Mémoires de l’Académie 9, 311 (1830).

    Google Scholar 

  2. Saint Venant B. de, and G. Wantzel: J. de l’École Polytechnique 27, 85 (1839).

    Google Scholar 

  3. Weisbach, J.: Lehrbuch der Ingenieur- und Maschinenmechanik. 3rd Edn, (1855).

    Google Scholar 

  4. Herrmann, M.: Zeitschrift des österreichischen Ingenieurvereins 12, 34 (1860).

    Google Scholar 

  5. Holtzmann, C.: Lehrbuch der theoretischen Mechanik, Stuttgart (1861).

    Google Scholar 

  6. Grashof, F.: Theoretische Maschinenlehre, I. Leipzig (1863).

    Google Scholar 

  7. Napier, R. D.: Engineer 23, 11 (1867).

    Google Scholar 

  8. Napier, R. D.: Engineer 28, 287 (1869).

    Google Scholar 

  9. Rankine, W. J. M.: Engineer 28, 352 (1869).

    Google Scholar 

  10. Zeuner, G.: Zivilingenieur 17, 71 (1871).

    Google Scholar 

  11. Hugoniot, M.: Comptes Rendus, Acad. Sei., Paris 103, 1178 (1886).

    Google Scholar 

  12. Reynolds, O.: Philosophical Magazine (5) 21, 185; Scientific Papers 2, 311 (1886).

    Google Scholar 

  13. Stodola, A.: Die Dampfturbinen, Berlin (1903).

    Google Scholar 

  14. Lorenz, H.: Physikalische Zeitschrift 4, 333 (1903).

    Google Scholar 

  15. Lorenz, H.: Z. Y. D. I. 47, 1600 (1903).

    Google Scholar 

  16. Prandtl, L., and R. Pröll: Z. V. D. I. 48, 348; Gesammelte Abhandlungen 2, 897 (1904).

    Google Scholar 

  17. Prandtl, L.: Strömende Bewegung der Gase und Dämpfe. Enzyklopädie der mathematischen Wissenschaften Bd. Y, 5 b, 287; Gesammelte Abhandlungen 2, 905 (1905).

    Google Scholar 

  18. Meyer, Th.: V. D. I. Forschungsheft 62 (1908).

    Google Scholar 

  19. Taylor, G. I.: A. R. C., R. & M. 1882 (1930).

    Google Scholar 

  20. Hooker, S. G.: A. R. C., R. & M. 1381 (1930).

    Google Scholar 

  21. Frankl, F. I.: Ree. math. Moscow 40, 1, 99 (1933).

    Google Scholar 

  22. Frössel, W.: Forsch. Ing.-Wes. 7, 75 (1936); English Translation NACA TM 844.

    Article  Google Scholar 

  23. Görtler, H.: ZAMM 19, 325 (1939).

    Article  MATH  Google Scholar 

  24. Oswatitsch, K., and W. Rothstein: Jahrbuch 1942 Luftfahrtforschung 1, 91 (1942); English Translation NACA TM 1215.

    Google Scholar 

  25. Emmons, H. W.: NACA TN 932 (1944).

    Google Scholar 

  26. Sauer, R.: FB 1992 (1944); English Translation NACA TM 1147.

    Google Scholar 

  27. Frankl, F. I.: Rep. of Acad, of Sci. USSR Math. Ser. 9, 5, 387 (1945).

    MathSciNet  MATH  Google Scholar 

  28. Emmons, H. W.: NACA TN 1003 (1946).

    Google Scholar 

  29. Falkovich, S.V.: PMM 10, 4, 503 (1946); English Translation NACA TM 1212.

    MathSciNet  MATH  Google Scholar 

  30. Shapiro, A. H., and W. R. Hawthorne: J. Appi. Mech. 14, A 317 (1947).

    MathSciNet  Google Scholar 

  31. Falkovich, S. V.: PMM 11, 223 (1947). English Translation Wright Field Tech. Rep. F-TS-1223-IA (1949).

    MathSciNet  MATH  Google Scholar 

  32. Frankl, F. I.: C. R. Acad. Sci. USSR 56, 683 (1947).

    MathSciNet  MATH  Google Scholar 

  33. Lighthill, M. J.: Proc. Roy. Soc. A 191, 323 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  34. Temple, G., and J. Yarwood: A. R. C., R. & M. 2077 (1947).

    Google Scholar 

  35. Binnie, A.M.: Proc. Roy. Soc. A 197, 545 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  36. Tomotika, S., and K. Tamada: Qu. App. Math. 7, 4, 381 (1950).

    MathSciNet  MATH  Google Scholar 

  37. Behrbohm, H.: ZAMM 30, 101 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  38. Tomotika, S., and Z. Hasimoto: J. Math. Phys. 29, 105 (1950).

    MathSciNet  MATH  Google Scholar 

  39. Cherry, T. M.: Proc. Roy. Soc. A 203, 551 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  40. Behrbohm, H.: ZAMM 30, 268 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  41. Armstrong, A. H., and M. G. Smith: A. R. C. Report (Unpublished) (1951).

    Google Scholar 

  42. Cherry, T. M.: Phil. Trans. Roy. Soc. A 245, 583 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  43. Shapiro, A. H., K. R. Wadleigh, B. D. Gavril and A. A. Fowle: Trans. A. S. M. E. 78, 617 (1956).

    Google Scholar 

  44. Baron, J. R.: NSL, MIT; WADC Report 54–279 (1954).

    Google Scholar 

  45. Kline, S. J., and A. H. Shapiro: Pub. sci. tech. Min. Air., Paris, Riabouchinsky Mémoires (1954).

    Google Scholar 

  46. Ehlers, F. E.: J. Aero. Sci. 22, 107 (1955).

    MathSciNet  MATH  Google Scholar 

  47. Chaix, B., and P. Henrici: J. Aero. Sci. 22, 141 (1955).

    Google Scholar 

  48. Yuriev, I. M.: PMM 19, 1, 103 (1955).

    Google Scholar 

  49. Wyatt, D.: NACA TN 3400 (1955).

    Google Scholar 

  50. Holder, D. W., H. H. Pearcey and G. E. Gadd: A. R. C. Current Paper, No. 180 (1955).

    Google Scholar 

  51. Bartz, D. R.: Trans. A. S. M. E. 77, 1235 (1955).

    Google Scholar 

  52. Cohen, C. B., and E. Reshotko: NACA TN 3326 (1955).

    Google Scholar 

  53. Sibulkin, M.: J. Aero. Sci. 23, 2, 162 (1956).

    MATH  Google Scholar 

  54. Persh, J., and R. Lee: NAVORD Report 4200 (1956).

    Google Scholar 

  55. Jacobs, W.: Jb. wiss. Ges. Luftf. (1956).

    Google Scholar 

  56. Oswatitsch, K.: Gas Dynamics. New York: Academic Press, 474, (1956).

    Google Scholar 

  57. Tyler, R. D.: A. R. C., R. & M. 2991 (1957).

    Google Scholar 

  58. Sibulkin, M.: J. Aero. Sci. 24, 249 (1957).

    Google Scholar 

  59. Dorfman, A. Sh.: PMM 22, 3, 399 (1958); English Translation AMM 22, 554.

    Google Scholar 

  60. Ryzhov, O. S.: PMM 22, 3, 396 (1958); English Translation AMM 22, 3, 549.

    Google Scholar 

  61. Martensen, E., and K. v. Sengbusch: Mitt. Max Planck Inst. No. 19 (1958).

    Google Scholar 

  62. Martensen, E.: ZAMM 88 (1958).

    Google Scholar 

  63. Shercliff, J. A.: J. Fluid Mech. 8, 645 (1958).

    Article  MathSciNet  Google Scholar 

  64. Crocco, L.: One-dimensional treatment of steady gas dynamics; High Speed Aerodynamics and Jet Propulsion III, Gas dynamics. (Editor, Emmons, H. W.) (1958).

    Google Scholar 

  65. Ryzhov, O. S.: PMM 23, 781 (1959). English Translation AMM 23, 4, 1115.

    MathSciNet  Google Scholar 

  66. Yuriev, I.M.: Isv. Akad. Nauk., OTN., Mekh. Mashinostr (4), 140 (1959). English Translation ARS J. 30, 4, 374 (1960).

    Google Scholar 

  67. Cherry, T. M.: J. Australian Math. Soc. 1, 80 (1960).

    Article  Google Scholar 

  68. Lipps, H.: ZAMM 40, 10/11, 507 (1960).

    MathSciNet  MATH  Google Scholar 

  69. Depassel, R.: Pub. sci. tech. Min. Air, Paris, No. 360 (1960).

    Google Scholar 

  70. Bray, K. N. C.: J. Fluid Mech. 6, 1 (1960).

    Article  Google Scholar 

  71. Cherry, T. M.: J. Australian Math. Soc. 1, 357 (1960).

    Article  MathSciNet  Google Scholar 

  72. Rao, G. V. R.: Progress in Astronautics and Rocketry 2, 669 (1960).

    Google Scholar 

  73. Lord, W. T.: A. R. C., R. & M. 3227 (1961).

    Google Scholar 

  74. Göthert, B.: Transonic Wind Tunnel Testing. AGAR Dograph 49, London: Pergamon, (1961).

    Google Scholar 

  75. Holder, D. W.: J. Roy. Aero. Soc. 65, 633 (1961).

    Google Scholar 

  76. Hall, I.M.: QJMAM 15, 4, 488 (1962).

    Google Scholar 

  77. Hall, I. M., and A. W. Moore: A. R. C. Report (unpublished) (1962).

    Google Scholar 

  78. Moore, A. W.: Unpublished Manchester University Report (1962).

    Google Scholar 

  79. Mager, A.: ARS Journal 31, 8, 1140 (1961).

    Google Scholar 

  80. Stratford, B. S.: A. R. C. Report (unpublished) (1962).

    Google Scholar 

  81. Cabannes, H.: Problèmes de magnétodynamique des fluides. Third International Congress in the Aeronautical Sciences, Stockholm (1962).

    Google Scholar 

Additional Bibliography

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Oswatitsch

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer-Verlag OHG., Berlin/Göttingen/Heidelberg

About this paper

Cite this paper

Hall, I.M., Sutton, E.P. (1964). Transonic flow in ducts and nozzles; a survey. In: Oswatitsch, K. (eds) Symposium Transsonicum. International Union of Theoretical and Applied Mechanics (IUTAM) / Internationale Union für Theoretische und Angewandte Mechanik (IUTAM). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88337-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88337-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48450-6

  • Online ISBN: 978-3-642-88337-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics