Advertisement

Methodology

  • Helmut Duddeck
  • Wolfgang Dietrich
  • Gábor Tóth

Abstract

In the following sections the basic multipulse NMR techniques used in the exercises are introduced. The emphasis, however, is not on the physical description and explanation of the pulse sequences, but on the practical evaluation of the spectra and their importance in structural elucidation. An excellent guide book [1] exists for those who want to have a deeper view into the experiments or are interested in active operation at an NMR instrument.

Keywords

Cross Peak Cosy Spectrum Digital Resolution HMQC Spectrum Diagonal Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braun S, Kalinowski H-O, Berger S (1996) 100 and More Basic NMR Experiments. VCH, Weinheim.Google Scholar
  2. 2.
    Ernst RR, Bodenhausen G, Wokaun A (1986; 2nd ed., 1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford.Google Scholar
  3. 3.
    Eberstadt M, Gemmecker G, Mierke DF, Kessler H (1988) Angew Chem 107: 1813CrossRefGoogle Scholar
  4. 3a.
    Eberstadt M, Gemmecker G, Mierke DF, Kessler H (1988) Angew Chem Int Ed Engl 34: 1671.CrossRefGoogle Scholar
  5. 4.
    Neuhaus D, Williamson M (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis. VCH, New York, Weinheim, Cambridge.Google Scholar
  6. 1.
    Günther H (3rd ed., 1992) NMR-Spektroskopie. Thieme, StuttgartGoogle Scholar
  7. 1a.
    Günther H (2nd ed., 1995) NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry. Wiley, New York.Google Scholar
  8. 2.
    Barrett MW, Farrant RD, Kirk DN, Mersh JD, Sanders JKM, Duax WL (1982; J Chem Soc Perkin Trans 2: 105.Google Scholar
  9. 3.
    Schneider H-J, Buchheit U, Becker N, Schmidt G, Siehl U (1985) J Am Chem Soc 107: 7027.CrossRefGoogle Scholar
  10. 4.
    Duddeck H, Rosenbaum D, Elgamal MHA, Fayez MBE (1986) Magn Resort Chem 24: 999.CrossRefGoogle Scholar
  11. 5.
    Croasmun WR, Carlson RMK (2nd ed. 1994) Two-Dimensional NMR-Spectroscopy. Applications for Chemists and Biochemists. VCH Publishers, New York.Google Scholar
  12. 1.
    For modern multipulse 1H broadband decoupling methods see Shaka AJ, Keeler J (1987) Prog NMR Spectrosc 19: 47.CrossRefGoogle Scholar
  13. 2.
    Kalinowski H-O, Berger S, Braun S (1984) 13C-NMR-Spektroskopie, Thieme, Stuttgart, p 46.Google Scholar
  14. 3.
    Benn R, Günther H (1983) Angew Chem 95: 381CrossRefGoogle Scholar
  15. 3a.
    Benn R, Günther H (1983) Angew Chem Int Ed Engl 22: 350Google Scholar
  16. 3b.
    Sanders JKM, Hunter BK (2nd ed., 1993) Modern NMR-Spectroscopy. Oxford University Press, Oxford.Google Scholar
  17. 4.
    Derome AE (1987) Modem NMR Techniques for Chemistry Research. Pergamon Press, Oxford.Google Scholar
  18. 4a.
    Friebolin HP (2nd ed., 1993) Basic One- and Two-Di-mensional NMR Spectroscopy. VCH, Weinheim.Google Scholar
  19. 5.
    Bax A (1984) J Magn Reson 57: 314.Google Scholar
  20. 6.
    Berger S (1997) Progr NMR Spectrosc 30: 137.CrossRefGoogle Scholar
  21. 1.
    Benn R, Günther H (1983) Angew Chem 95: 381CrossRefGoogle Scholar
  22. 1a.
    Benn R, Günther H (1983) Angew Chem Int Ed Engl 22: 350.CrossRefGoogle Scholar
  23. 2.
    Derome AE (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford.Google Scholar
  24. 3.
    Sanders JKM, Hunter BK (2nd ed., 1993) Modern NMR-Spectroscopy. Oxford University Press, Oxford.Google Scholar
  25. 4.
    Bax A, Pochapsky SS (1992) J Magn Resort 99: 638.Google Scholar
  26. 4a.
    Norwood TJ (1994) Chem Soc Rev 59.Google Scholar
  27. 4b.
    Keeler J, Cowes RT, Davis AL, Laue ED (1994) Meth Enzym 239: 145.CrossRefGoogle Scholar
  28. 4c.
    Price W (1996) Ann Rep NMR 32: 51.Google Scholar
  29. 5.
    Barkhuijsen H, De Beer R, Van Ormondt (1987) J Magn Reson 73: 553.Google Scholar
  30. 5a.
    Tirende CF, Martin JF (1989) J Magn Reson 81: 577.Google Scholar
  31. 5b.
    Led JJ, Gesmar H (1991) Chem Rev 91: 1413.CrossRefGoogle Scholar
  32. 6.
    Kessler H, Gehrke M, Griesinger C (1988) Angew Chem 100: 507CrossRefGoogle Scholar
  33. 6a.
    Kessler H, Gehrke M, Griesinger C (1988) Angew Chem Int Ed Engl 27: 490.CrossRefGoogle Scholar
  34. 6b.
    Eberstadt M, Gemmecker G, Mierke DF, Kessler H (1995) Angew Chem 107: 1813CrossRefGoogle Scholar
  35. 6c.
    Eberstadt M, Gemmecker G, Mierke DF, Kessler H (1995) Angew Chem Int Ed Engl 34: 1671.CrossRefGoogle Scholar
  36. 7.
    Ernst RR, Bodenhausen G, Wokaun A (1986; 2nd ed., 1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford, p 434.Google Scholar
  37. 8.
    Van de Ven FJM (1995) Multidimensional NMR in Liquids. Basic Principles and Experimental Methods. VCH, New York, p 241ff.Google Scholar
  38. 9.
    Elgamal MHA, Soliman HSM, H. Duddeck, Mikhova B, Gartmann M (1995; Z Naturforsch 50b: 563.Google Scholar
  39. 1.
    Benn R, Günther H (1983) Angew Chem 95: 381CrossRefGoogle Scholar
  40. 1a.
    Benn R, Günther H (1983) Angew Chem Int Ed Engl 22: 350.Google Scholar
  41. 3b.
    Sanders JKM, Hunter BK (2nd ed., 1993) Modern NMR-Spectroscopy. Oxford University Press, Oxford.Google Scholar
  42. 4.
    Günther H (3. Aufl., 1992) NMR-Spektroskopie. Thieme, Stuttgart, New York.Google Scholar
  43. 4a.
    Günther H (2nd ed., 1995) NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry. Wiley, New York.Google Scholar
  44. 5.
    Duddeck H (1983) Tetrahedron 39: 1365.CrossRefGoogle Scholar
  45. 6.
    Rutar V (1984) J Magn Reson 58: 306.Google Scholar
  46. 6a.
    Wilde JA, Bolton PH (1984) J Magn Reson 59: 43.Google Scholar
  47. 6b.
    Van de Ven FJM (1995) Multidimensional NMR in Liquids. Basis Principles and Experimental Methods. VCH, New York, p 211.Google Scholar
  48. 7.
    Griesinger C, Schwalbe H, Schleucher J, Sattler M. In Croasmun WR, Carlson RMK (2nd ed. 1994) Two-Dimensional NMR-Spectroscopy. Applications for Chemists and Biochemists. VCH, New York, p 457ff.Google Scholar
  49. 8.
    Van de Ven FJM (1995) Multidimensional NMR in Liquids. Basis Principles and Experimental Methods. VCH, New York, p 255ff.Google Scholar
  50. 9.
    Reynolds WF, McLean S, Tay L-L, Yu M, Enriquez RG, Estwick DM, Pascoe KO (1997) Magn Reson Chem 35: 455.CrossRefGoogle Scholar
  51. 10.
    Ernst RR Bodenhausen C, Wokaun A (1986; 2nd ed, 1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford, p 479.Google Scholar
  52. 11.
    Lerner L (1986) J Magn Reson 69: 375.Google Scholar
  53. 11a.
    Domke T (1991) J Magn Reson 95: 174.Google Scholar
  54. 11b.
    Martin GE, Spitzer TD, Crouch RC, Luo J-K, Castle RN (1992) J Heterocyclic Chem 29: 577.CrossRefGoogle Scholar
  55. 11c.
    John BK, Plant D, Heald SL, Hurd RE (1991) J Magn Reson 94: 664.Google Scholar
  56. 11d.
    Wilker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Magn Reson Chem 31: 287.CrossRefGoogle Scholar
  57. 1.
    Kessler H, Griesinger C, Zarbock J, Looslie HR (1984) J Magn Reson 57: 331.Google Scholar
  58. 2.
    Breitmaier E, Voelter W (3rd ed., 1978) 13C NMR Spectroscopy. Verlag Chemie, Weinheim, New York.Google Scholar
  59. 3.
    Griesinger C, Schwalbe H, Schleucher J, Sattler M. In: Croasmun WR, Carlson RMK (2nd ed. 1994) Two-Dimensional NMR-Spectroscopy. Applications for Chemists and Biochemists. VCH, New York, p 457ff.Google Scholar
  60. 1.
    Benn R, Günther W (1983) Angew Chem 95: 381CrossRefGoogle Scholar
  61. 1a.
    Benn R, Günther W (1983) Angew Chem Int Ed Eng 122: 350.CrossRefGoogle Scholar
  62. 2.
    Derome AE (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford, p 234.Google Scholar
  63. 3.
    Buddrus J, Bauer H (1987) Angew Chem 99: 642CrossRefGoogle Scholar
  64. 3a.
    Buddrus J, Bauer H (1987) Angew Chem Int Ed Engl 26: 625.CrossRefGoogle Scholar
  65. 4.
    Agrawal PK, Bunsawansong P, Morris GA (1997) Magn Reson Chem 35: 441.CrossRefGoogle Scholar
  66. 1.
    Von Philipsborn W (1971) Angew Chem 83: 470CrossRefGoogle Scholar
  67. 1a.
    Von Philipsborn W (1971) Angew Chem Int Ed Engl 10: 472.CrossRefGoogle Scholar
  68. 2.
    Noggle JH, Schirmer RE (1971) The Nuclear Over-hauser Effect. Academic Press, New York.Google Scholar
  69. 3.
    Neuhaus D, Williamson M (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis. VCH, New York, Weinheim, Cambridge.Google Scholar
  70. 4.
    Kalinowski H-O, Berger S, Braun S (1984) 13C-NMR-Spektroskopie. Thieme, Stuttgart.Google Scholar
  71. 5.
    Ried W, Urlass G (1953) Chem Ber 86: 1101CrossRefGoogle Scholar
  72. 5a.
    Malik E, Hassan M, Rosenbaum D, Duddeck H (1989) Magn Reson Chem 27: 391.CrossRefGoogle Scholar
  73. 6.
    Martin ML, Martin GJ, Delpuech J-J (1980) Practical NMR Spectroscopy. Heyden, London, p 222.Google Scholar
  74. 6a.
    Derome AE (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford, p 130.Google Scholar
  75. 7.
    Elgamal MHA, Soliman HSM, H. Duddeck, Mikhova B, Gartmann M (1995) Z Naturforsch 50b: 563.Google Scholar
  76. 8.
    Van de Ven FJM (1995) Multidimensional NMR in Liquids. Basic Principles and Experimental Methods. VCH, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Helmut Duddeck
    • 1
  • Wolfgang Dietrich
    • 2
  • Gábor Tóth
    • 3
  1. 1.Institute of Organic ChemistryUniversity of HannoverHannoverGermany
  2. 2.Faculty of ChemistryRuhr University BochumBochumGermany
  3. 3.Technical Analytical Research Group of the Hungarian Academy of Sciences, Institute for General and Analytical ChemistryTechnical University BudapestBudapestHungary

Personalised recommendations