Skip to main content

Introduction

  • Chapter
Structural Dynamics
  • 307 Accesses

Abstract

Modern developments in Structural Dynamics focus on a realistic modeling of loading as well as structural and material parameters. Naturally this implies the consideration of the statistical uncertainties involved in most of the problems encountered in structural mechanics. It is a well known fact that the so-called deterministic analysis utilizes selectively only part of the available information on the parameters involved. In other words only representative (e.g. so-called minimum or maximum) values are used. Consequently, modern methods of structural dynamics may be considered as part of an effort of information processing, where, based on applicable mechanical models the entire spectrum of values — known or estimated — of certain parameters are utilized. This, of course, requires on one hand the development of sophisticated concepts, mechanical and probabilistic models, and on the other hand of new, efficient computational procedures. In this context it is important to stress the fact that the increase in sophistication of the load models must not be traded off by simplifying the mechanical models. This is even more important when solutions to practical, i.e. real world problems have to be developed. An additional advantage is the fact that the analysis is consistent in the sense that load, mechanical and safety analysis is carried out, at least approximately, at the same level of sophistication. This generally can certainly not be claimed for “deterministic” analyses. Most important, however, the increased effort which is required to carry out this more realistic analysis provides a quantitative information on the structural reliability or risk of failure.

The section is authired by G.I. Schuäller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crandall, S.H., Mark, W.D.: “Random Vibration in Mechanical Systems”, Academic Press, New York, 1963.

    Google Scholar 

  2. Yang, C.Y.: “Random Vibration of Structures”, John Wiley & Sons, New York, 1986.

    Google Scholar 

  3. Lin, Y.K.: “Probabilistic Theory of Structural Dynamics”, Robert E. Krieger Publ. Co., Huntington, New York, 1976.

    MATH  Google Scholar 

  4. Elishakoff, I.: Probabilistic Methods in the Theory of Structures”, John Wiley & Sons, New York, 1983.

    MATH  Google Scholar 

  5. Ochi, M.K.: “Applied Probability and Stochastic Processes”, John Wiley & Sons, New York, 1990.

    MATH  Google Scholar 

  6. Shinozuka, M.: “Stochastic Mechanics”, Vol. I and II: Dept. of Civil Engineering & Engineering Mechanics, Columbia University, New York, January 1987; Vol. III: Dept. of Civil Engineering and Operations Research, Princeton University, Princeton, NJ, November 1988.

    MATH  Google Scholar 

  7. Schuëller G.I., Shinozuka M. (Editors): “Stochastic Methods in Structural Dynamics”, Martinus Nijhoff Publ., Dordrecht, The Netherlands, 1987.

    MATH  Google Scholar 

  8. Clough, R.W., Penzien, J.: “Dynamic of Structures”, McGraw-Hill Book Co., New York, 1975.

    Google Scholar 

  9. Natke, H.G.: “Baudynamik”, Einführung in die Dynamik mit Anwendungen aus dem Bauwesen, B.G. Taubner, Stuttgart, Germany, 1989 (in German).

    MATH  Google Scholar 

  10. Bathe, K.J.: “Finite Element Procedures in Engineering Analysis”, New Jersey, Prentice Hall, 1982.

    Google Scholar 

  11. Nataf, A.: “Determination des Distribution dont les Marges sont Donnees”, Comptes Rendus de L’Academie des Sciences, Paris, 1962, 225, pp. 42–43.

    Google Scholar 

  12. Shinozuka, M., Sato, Y.: “Simulation of Nonstationary Random Processes”, Journal of the Engineering Mechanics Division, ASCE, Vol. 93, 1967, pp. 11–40.

    Google Scholar 

  13. Priestley, M.B.: “Evolutionary Spectra and Non-Stationary Processes”, Journal of the Royal Statistical Society, London, England, Series B, Vol. 27, 1965, pp. 204–237.

    MathSciNet  MATH  Google Scholar 

  14. Priestley, M.B.: “Power spectral analysis of nonstationary random processes,” Journal of Sound and Vibration, 6, 86–97, (1967).

    Article  Google Scholar 

  15. Aki, K. and Richards, P.G.: “Quantitative Seismology”, Theory and Methods, Vol. 1, Vol. 2, Freeman & Co, San Francisco, 1980.

    Google Scholar 

  16. Aki, K.: “Prediction of Strong Ground Motion: Theoretical Formulations”, Proc., NATO, Adv.Study, Anakara, Turkey, 1986, pp.3–40.

    Google Scholar 

  17. Papageoriou A.S. and Aki, K.: “A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion”, I. Description of the Model, II. Application of the Model, Bull. Seism. Soc. Am., Vol. 73, 1983, pp. 693–722, pp. 953–978.

    Google Scholar 

  18. Peinelt, R.H.: “Digital Spectral Analysis — DISA — A User’s Manual” An Easy-To-Use Computer Code to Calculate Higher Order Spectral Densities, Report No. 27–90, Institute of Engineering Mechanics, University of Innsbruck, Innsbruck, Austria, 1990.

    Google Scholar 

  19. Charlier, C.V.L: “A new form of the frequency function”, Meddelande fran Astronomiska Observatorium, Ser. II 51 (1928), 1–28.

    Google Scholar 

  20. Hagedorn, P: “Non-Linear Oscillations”, Clarendon Press, Oxford, 1982.

    Google Scholar 

  21. Arnold, L., Oeljeklaus, E., Pardoux, E.: “Some papers on Lyapunov exponents”, L. Arnold, V. Wihstutz (eds), Almost sure and moment stability for linear I to equation, Report 141, Universität Bremen, Forschungsschwerpunkt Dynamische Systeme, 1985.

    Google Scholar 

  22. Eller, C., Krätzig, W.B.: “Numerische Stabilitätsanalyse linear und nichtlinear, deformierbarer, parametererregter Schalentragwerke”, Ing. Archiv, 59 (1989), pp. 345–356.

    Article  MATH  Google Scholar 

  23. Infante, E.R.: “On the Stability of Some Linear Nonautonomous Random Systems”, ASME, J. Appl. Mech., 35, 1968, pp. 7–12.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kozin, F.: “Some Results on Stability of Stochastic Systems”, I. Elishakoff, R.H. Lyon (eds.), Random VibrationStatus and Recent Developments, Studies in Applied Mechanics 14, Elsevier, Amsterdam-Oxford-New York-Tokyo, pp. 163–191,1986.

    Google Scholar 

  25. Lin, Y.K., Kozin, F., Wen, Y.K., Casciati, F., Schueller, G.I., Der Kiureghian, A., Ditlevsen, O., Vanmarcke, E.H.: “Methods of Stochastic Structural Dynamics”, Structural Safety, Vol. 3+4, 1986, pp. 231–267.

    Google Scholar 

  26. Wedig, W.V.: “Dynamic Stability of Beams under Axial Forces — Lyapunov Exponents for General Fluctuating Loads”, Preprints, Eurodyn 90, Bochum, Germany, June 5–7, 1990, pp. 57–64.

    Google Scholar 

  27. Bucher, C.G.: “Sample Stability of Multi-Degree-of-Freedom Systems”, L. Arnold (Editor), Lecture Notes in Mathematics, Springer Verlag, Berlin — Heidelberg, to appear 1991.

    Google Scholar 

  28. Atalik, T.S., Utku, S.: “Stochastic Linearization of Multidegree of Freedom Nonlinear Systems”, Journal of Earthquake Engineering and Structural Dynamics, 1976, 4, pp. 411–420.

    Article  Google Scholar 

  29. Schueller G.I., Bucher, C.G., Bourgund, U. and Ouypornprasert, W: “On Efficient Computational Schemes to Calculate Structural Failure Probabilities”, Probabilistic Engineering Mechanics, Vol. 4, No. 1, 1989, pp. 10–18.

    Article  Google Scholar 

  30. Schuëller G.I. and Stix, R.: “A Critical Appraisal of Methods to Determine Failure Probabilities”, Structural Safety, Vol. 4, 1987, pp. 293–309.

    Article  Google Scholar 

  31. Bucher C.G.: “Adaptive Sampling — An Iterative Fast Monte-Carlo Procedure”, Structural Safety, 1988, Vol. 5, No. 2, 1988, pp. 119–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Schuëller, G.I. (1991). Introduction. In: Schuëller, G.I. (eds) Structural Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88298-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88298-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88300-2

  • Online ISBN: 978-3-642-88298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics