Advertisement

Sulfur Isotope Studies in the Zinc-Lead Mine San Vicente, Central Peru

  • H. Gorzawski
  • L. Fontboté
  • C. W. Field
  • R. Tejada
Part of the Special Publication No. 8 of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 8)

Abstract

The stratabound Zn-Pb deposit of San Vicente, presently the largest zinc producer of Peru, is located about 300 km east of Lima in the tropical rain forest of Central Peru (Schulz 1971; Levin and Amstutz 1973; Fontboté and Gorzawski 1990). The San Vicente deposit appears to be associated with certain dolomitic facies within a transgressive carbonate sequence (up to 2000 m thick) in the eastern part of the Upper Triassic-Liassic Pucará Group. The ore-bearing dolomites belong to a peritidal facies belt that forms a transition between detrital-evaporitic sediments at the margin of the Brazilian Shield to the east, and open marine carbonates of the central Pucará to the west. Along this facies belt, that is recognized over a distance of at least 200 km from north to south, are a number of nonexploited ore deposits and occurrences. These collectively belong to a Mississippi Valley-type province in the eastern Pucará, whose economic significance at present is not well known (Fontboté this Vol.).

Keywords

Sulfur Isotope Econ Geol Marine Sulfate Brazilian Shield Sulfur Isotope Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson GM, Garven G (1987) Sulfate-sulfide-carbonate associations in Mississippi Valley-type lead-zinc deposits. Econ Geol 82:482–488CrossRefGoogle Scholar
  2. Barton PB (1967) Possible role of organic matter in the precipitation of Mississippi Valley ores. In: Brown J (ed) Genesis of stratiform Pb-Zn-Ba deposits in carbonate rocks. Econ Geol Mon 3:371–377Google Scholar
  3. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretations. Chem Geol 28:199–260CrossRefGoogle Scholar
  4. Field CW, Rye RO, Dymond JR, Whelan JF, Senechal RG (1983) Metalliferous sediments of the East Pacific. In: Shanks WC (ed) III Cameron volume on unconvential mineral deposits. Soc Minnig engineers, New York, pp 133–156Google Scholar
  5. Fontboté L Stratabound ore deposits in the Pucará Basin — An overview. This Vol, pp 253-266Google Scholar
  6. Fontboté L, Amstutz GC (1983) Facies and sequence analyses of diagenetic crystallization rhythmites in strata-bound Pb-Zn-(Ba-F) deposits in the Triassic of Central and Southern Europe. In: Schneider HG (ed) Mineral deposits of the Alps and of the Alpine Epoch in Europe. Springer, Berlin Heidelberg New York Tokyo, pp 347–358CrossRefGoogle Scholar
  7. Fontboté L, Gorzawski H (1988) Isotope (Sr, C, O, and S) tracing of diagenetic ore formation in carbonate-hosted ore deposits illustrated on the F-(Pb-Zn) deposits in the Alpujarrides, Spain and the San Vicente Zn-Pb Mine, Peru. In: Boissonas J, Omenetto P (eds) Mineral deposits in the European Community. Springer, Berlin Heidelberg New York Tokyo, pp 465–484CrossRefGoogle Scholar
  8. Fontboté L, Gorzawski H (1990) Genesis of the Mississippi Valley-type Zn-Pb deposit of San Vicente, central Peru: Geological and isotopic (Sr, O, C, S) evidences. Econ Geol 85:5CrossRefGoogle Scholar
  9. Gorzawski H (1989) Isotopic, geochemical and petrographic characterization of the diagenetic evolution in carbonate-hosted stratabound Zn-Pb-(F-Ba) deposits (With a comparison of Croix de Pallières/France, San Vicente/Peru, and other localities). Heidelberger Geowiss Abh 28, 250 pGoogle Scholar
  10. Gorzawski H, Fontboté L, Sureau JF, Calvez JY (1989) Strontium isotope trends during diagenesis in ore-bearing carbonate basins. Geol Rundsch 78, 1:269–291CrossRefGoogle Scholar
  11. Heyl AV, Landis GP, Zartman RE (1974) Isotopic evidence for the origin of Mississippi Valley-type mineral deposits. Econ Geol 69:992–1006CrossRefGoogle Scholar
  12. Hunt JM (1979) Petroleum geochemistry and geology. Freeman, San Francisco, 617 pGoogle Scholar
  13. JICA (1976) Report on geological survey of the Cordillera Oriental, central Peru. Jpn Int Coop Agency, Jpn Mining Agency 2, 44 p, 27 appGoogle Scholar
  14. Levin P, Amstutz GC (1973) Neue Untersuchungen über schichtgebundene Lagerstätten im zentralen Ostperu. Münster Forsch Geol Paläont 31/32:233–259Google Scholar
  15. Macqueen RW, Powell TG (1983) Organic geochemistry of the Pine Point lead-zinc ore field and region, Northwest Territories, Canada. Econ Geol 78:1–25CrossRefGoogle Scholar
  16. Nielsen H (1985) Sulfur isotope ratios in strata-bound mineralizations in Central Europe. Geol Jb D70:225–262Google Scholar
  17. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 509–567Google Scholar
  18. Orr WL (1974) Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Basin Paleozoic oils. Am Assoc Petrol Geol Bull 58:2295–2318Google Scholar
  19. Orr WL (1977) Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Campos R, Goni J (eds) Advances in organic geochemistry. Enadisma, Madrid Spain, pp 571–597Google Scholar
  20. Powell TG, Macqueen RW (1984) Precipitation of sulfide ores and organic matter: Sulfate reactions at Pine Point, Canada. Science 224:63–66CrossRefGoogle Scholar
  21. Schulz GG (1971) Die schichtgebundene Zinkblendelagerstätte San Vicente in Ost-Peru und ihr geologischer Rahmen. Diss, Univ Aachen, 165 pGoogle Scholar
  22. Spirakis CS (1986) The valence of sulfur in disulfides — an overlooked clue to the genesis of Mississippi Valey-type lead-zinc deposits. Econ Geol 81:1544–1545CrossRefGoogle Scholar
  23. Trudinger PA, Chambers LA, Smith JW (1985) Low-temperature sulphate reduction:biological versus abiological. Can J Earth Sci 22:1910–1918CrossRefGoogle Scholar
  24. Vredenburgh LD, Cheney ES (1971) Sulfur and carbon isotopic investigation of petroleum. Wind River Basin, Wyoming. Bull Am Assoc Petrol Geol 55:1954–1975Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • H. Gorzawski
    • 1
    • 2
  • L. Fontboté
    • 2
  • C. W. Field
    • 3
  • R. Tejada
    • 4
  1. 1.Max-Planck-Institut für ChemieMainzDeutschland
  2. 2.Mineralogisch-Petrographisches InstitutUniversität HeidelbergHeidelbergDeutschland
  3. 3.Department of GeologyOregon State UniversityCorvallisUSA
  4. 4.San Ignacio de Morococha S.A.San VicentePeru

Personalised recommendations