Skip to main content

Dosiswirkungsbeziehung und Mikroverteilung der absorbierten Energie

  • Chapter
Book cover Stochastik der Strahlenwirkung
  • 16 Accesses

Zusammenfassung

Es soll nun die Frage nach der Ausdehnung der empfindlichen Bereiche gestellt werden. In Teil II wurde gezeigt, daß jeder Dosiswirkungsbeziehung eine Mindestzahl S der im Mittel für den Testeffekt zusammenwirkenden Absorptionsereignisse zuzuordnen ist. Man könnte einfach an dieses Ergebnis anschließen und fragen: Wie groß muß ein Bereich im biologischen Objekt wenigstens sein, damit er bei dem beobachteten Mittelwert der Inaktivierungsdosis von S Absorptionsereignissen betroffen wird? Dazu wäre auf die Leasche Methode des assoziierten Volumens zurückzugreifen. Lea benützte diese Methode, um aus exponentiellen Inaktivierungskurven an Enzymen, Viren und in einigen Fällen auch Bakterien die empfindlichen Volumina zu erschließen; er gab für kugelförmige empfindliche Bereiche verschiedener Durchmesser die Dosen an, für die im Mittel ein Absorptionsereignis auftritt. Seine Kurven reichen allerdings nur bis zu Durchmessern des kritischen Bereiches von etwa 0,07 μ; dem entspricht für Röntgenstrahlung eine Dosis von etwa 104 rad. Die Inaktivierungsdosen für in vitro bestrahlte Zellen liegen wesentlich tiefer, und man erhält — wie hier nur erwähnt sei — Mindestdurchmesser von etwa 0,3 μ, wenn man die Leaschen Berechnungen zu größeren Volumina hin erweitert. Dieses Ergebnis weist bereits darauf hin, daß die empfindliche Struktur nicht ein einzelner Bereich von nur makromolekularer Größe ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis zu Teil III

  • Barendsen, G. W.: Impairment of the proliferative capacity of human cells in culture by a-particles with different linear-energy-transfer. Int. J. Radiat. Biol. 8, 453–466 (1964).

    Article  CAS  Google Scholar 

  • —— Relative Effectiveness of Ionizing Radiations in Relation to LET and the Influence of Oxygen. Panel on the Biophysical aspects of radiation quality, IAEA, Vienna (1965), to be published by IAEA, Vienna.

    Google Scholar 

  • ——, and T. L. J. Beusker: Effects of different ionizing radiations on human cells in tissue culture. I. Radiation Research 13, 832–840 (1960).

    Article  PubMed  CAS  Google Scholar 

  • ——, T. L. J. Beusker, A. J. Vergroesen, and L. Budke: Effects of different ionizing radiations on human cells in tissue culture. II. Radiation Research 13, 841–849 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Bateman, J. L., H. H. Rossi, V. P. Bond, and J. Gilmartin: The dependence of RBE on energy of fast neutrons. II. Biological evaluation at discrete neutron energies in the range 0.43 to 1.80 MeV. Radiation Research 15, 5, 694–706 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Boag, J. W.: The distribution of linear energy transfer or “Ion Density” for fast neutrons in water. Radiation Research 1, 323–341 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Elkind, M. M., and H. Sutton: Radiation response of mammalian cells grown in culture. Radiation Research 13, 556–593 (1960).

    Article  PubMed  CAS  Google Scholar 

  • ——, and W. B. Moses: Postirradiation survival kinetics of mammalian cells grown in culture. J. cell comp. Physiol, (suppl.) 58, 113 (1961).

    Article  PubMed  Google Scholar 

  • ——, A. Han, and K. W. Volz: Radiation response of mammalian cells grown in culture. J. nat. Cancer Inst. 30, No. 4, 705 (1963).

    Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and its Applications. Vol. 1. New York, London: J. Wiley 1957.

    Google Scholar 

  • Fisz, M.: Probability Theory and Mathematical Statistics. New York, London: J. Wiley 1963.

    Google Scholar 

  • Fowler, J.: Presentation on the Panel discussion. In: Biological Effects of Neutron and Proton Irradiations, II. Proceedings of a Symposium, Upton, New York (1963), IAEA, Vienna (1964).

    Google Scholar 

  • —— Phys. in Med. Biol. 9, 177 (1964).

    Article  Google Scholar 

  • —— Distributions of Hit Numbers on Single Targets. Panel on Biophysical Aspects of Radiation Quality, IAEA, Vienna (1965); to be published by IAEA, Vienna.

    Google Scholar 

  • Gooch, P. C., M. A. Bender, and M. L. Randolph: Chromosome Aberrations Induced in Human Somatic Cells by Neutrons. In: Biological Effects of Neutrons and Proton Irradiation, I. Proceedings of a Symposium, Upton, New York (1963), IAEA, Vienna (1964).

    Google Scholar 

  • Hall, E. J., and J. S. Bedford: Dose Rate: Its effect on the survival of HeLa cells irradiated with gamma rays. Radiation Research 22, 305–315 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Harder, D.: Physikalische Grundlagen zur relativen biologischen Wirksamkeit verschiedener Strahlenarten. Biophysik 1, 225–258 (1964).

    Article  Google Scholar 

  • Hart, J., and R. L. Platzman: Radiation Chemistry. In: Mechanisms in Radiobiology, 93–257. Ed. by M. Errerà and A. Forssberg, Vol. I. New York, London: Acad. Press 1961.

    Google Scholar 

  • Hine, G. J., and G. L. Brownell: Radiation Dosimetry. New York: Academic Press 1956.

    Google Scholar 

  • Howard-Flanders, P.: Physical and chemical mechanisms in the injury of cells by ionizing radiations. Advanc. in Biol, and Med. Phys. 6, 553 (1958).

    CAS  Google Scholar 

  • Humphrey, R. M., and W. K. Sinclair: The relative biological effectiveness of 22-Mevp X-rays, Cobalt-60 gamma rays, and 200-Kv X-rays. VIII. Radiation Research 20, 593–599 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, F., and J. Arena: Destruction of the activity of desoxyribonucleic acid in irradiated cells. Radiation Research 13, 137–147 (1960).

    Article  PubMed  CAS  Google Scholar 

  • —— and C. Norcrons: Inactivation by ionizing radiation of coenzyme A in various cells. Radiation Research 12, 13–19 (1960).

    Article  PubMed  CAS  Google Scholar 

  • ——, A. Preston, and B. Vogel: Radiation sensitivity of enzymes in wet and dry yeast cells. Radiation Research 7, 465–472 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Lea, D. E.: Action of Radiation on Living Cells, 2nd edition. Cambridge: University Press 1956.

    Google Scholar 

  • Miletic, B., D. Petrovic, A. Han, and L. Sasel: Restoration of viability of X-irradiated L-strain cells. Radiation Research 23, 94–103 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Oberheuser, F., and H. A. Kunkel: Ultrafraktionierung und relative biologische Wirksamkeit schneller Elektronen. Biophysik 1, 11–19 (1963).

    Article  Google Scholar 

  • Pollard, E. C.: The action of ionizing radiation on virus. Advanc. Virus Res. II, 109 (1954).

    Article  Google Scholar 

  • Puck, Th. T.: Quantitative studies on mammalian cells in vitro. Rev. Modern Physics 31, 433 (1959).

    Article  CAS  Google Scholar 

  • Rajewsky, B.: Evaluation of Linear Energy Transfer. In: Quantities, Units, and Measuring Methods of Ionizing Radiation. Symposium, Rom 1958. Ed. Fossati, F. Mailand: Verlag Ulrico Hoepli.

    Google Scholar 

  • Rossi, H. H.: Specification of radiation quality. Radiation Research 10, 522–531 (1959).

    Article  PubMed  CAS  Google Scholar 

  • —— Spatial distribution of energy deposition by ionizing radiation. Radiation Research, Suppl. 2, 290–299 (1960).

    Article  PubMed  CAS  Google Scholar 

  • —— Distribution of radiation energy in the cell. Radiology 78, 530–535 (1962).

    PubMed  CAS  Google Scholar 

  • —— Correlation of radiation quality and biological effect. Ann. N. Y. Acad. Sci. 114, 4–13 (1964).

    Article  PubMed  CAS  Google Scholar 

  • —— Microdosimetry. Panel on Biophysical Aspects of Radiation Quality IAEA, Vienna (1965); to be published autumn 1965 by IAEA, Vienna.

    Google Scholar 

  • —— Energy Distribution in the Absorption of Radiation; to be published in: Advances in Biological and Medical Physics, Lawrence and Tobias edit. New York: Academic Press 1966.

    Google Scholar 

  • —— Microscopic Energy Distribution in Irradiated Matter, in: Radiation Dosimetry, 2nd edition. New York: Academic Press (In press).

    Google Scholar 

  • ——, and G. Failla: Tissue-equivalent ionization chambers. Nucleonics 14, 32–37 (1956).

    CAS  Google Scholar 

  • ——, and W. Rosenzweig: Measurements of neutron dose as a function of linear energy transfer. Radiation Research 2, 417–425 (1955).

    Article  PubMed  CAS  Google Scholar 

  • ——, M. H. Biavati, and W. Gross: Local energy density in irradiated tissues. 1. Radiobiological Significance. Radiation Research 15, 431–439 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. C.: The Inactivation of monomolecular film of protein and its relation to the life-time of active radicals formed in water by X-radiation. Arch. Biochem. 50, 323 (1954).

    Google Scholar 

  • Snyder, W. S.: The LET Distribution of Dose in some Tissue Cylinders. In: Biological Effects of Neutron and Proton Irradiations. Proceedings of a Symposium, Upton, New York (1963), Iaea, Vienna (1964).

    Google Scholar 

  • Wilson, C. T. R.: Ionization by X-rays and β-rays. Proc. roy. Soc. A 104, No. 1, 192 (1923).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellerer, A.M. (1966). Dosiswirkungsbeziehung und Mikroverteilung der absorbierten Energie. In: Stochastik der Strahlenwirkung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88274-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88274-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49111-5

  • Online ISBN: 978-3-642-88274-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics