Skip to main content

Multipoint Approximation Method for Structural Optimization Problems with Noisy Function Values

  • Chapter

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 423))

Abstract

The multipoint approximation method is considered as a general iterative technique, which uses in each iteration simplified approximations of the original stochastic objective/constraint functions. They are obtained by the multiple regression analysis methods which can use information being more or less inaccurate. The technique allows to use in each iteration the information gained in several previous design points which are considered as a current design of numerical experiments (multipoint approximations). It allows to consider instead of the initial stochastic optimization problem a sequence of simpler mathematical programming problems and to reduce the total number of time-consuming structural analyses. The obtained approximations are assumed to be valid within a current subregion of the space of design variables, defined by move limits.

Several particular forms of approximations are considered including explicit expressions (linear, intrinsically linear, general nonlinear) and simplified implicit expressions. The proposed approach provides flexibility in choosing design variables and objective/constraint functions and allows the designer to use his/her experience and judgement in directing the optimization process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartczak, L.; Carlsen, H.: An optimization study of Stirling engines based on advanced simulation. Proc. 5th Int. Stirling Engine Conference, Dubrovnik, 1991, 161–166

    Google Scholar 

  2. Barthelemy, B.; Haftka, R.T.: Accuracy analysis of the semi-analytical method for shape sensitivity calculation. In: AIAA Paper 88–2284, Proc. AIAA/ASME/ ASCE/AHS/ASC 29th Structures, Structural Dynamics and Materials Conf., Williamsburg, VA, April 18–20, 1988. Part 1, 572–581

    Google Scholar 

  3. Barthelemy, J.-F.M, Haftka, R.T.: Approximation concepts for optimum structural design — A review. Structural Optimization 5 (1993), 129–144

    Article  Google Scholar 

  4. Box, G.E.P., Draper, N.R.: Empirical model-building and response surfaces. Wiley, 1987

    Google Scholar 

  5. Brown, R.T.; Nachlas, J. A.: Structural optimization of laminated conical shells. AIAA J. 23 (1985), 781–787

    Article  Google Scholar 

  6. Draper, N.R.; Smith, H.: Applied regression analysis. 2nd ed. N.Y.: Wiley, 1981

    Google Scholar 

  7. Fadel, G.M.; Riley, M.F.; Barthelemy, J.M.: Two point exponential approximation method for structural optimization. Structural Optimization 2 (1990), 117–124

    Article  Google Scholar 

  8. Free, J.W.; Parkinson, A.R.; Bryce, G.R.; Balling, R.J.: Approximation of computationally expensive and noisy functions for constrained nonlinear optimization. Transactions of the ASME 109 (1987), 528–532

    Google Scholar 

  9. Haftka, R.T.; Nachlas, J.A.; Watson, L.T.; Rizzo,T.; Desai, R.: Two-point constraint approximation in structural optimization. Comp. Meth. Appl. Mech. Eng. 60 (1987), 289–301

    Article  Google Scholar 

  10. Marti, K.: Stochastic programming: Numerical solution techniques by semi-stochastic approximation methods. In: Slowinski, R.; Teghem, J. (eds.), Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, 1991, 23–43, Kluwer

    Google Scholar 

  11. Müller, G.; Tiefenthaler, P.: Design optimization with a commercial finite element program. In: Eschenauer, H.A.; Mattheck, C; Olhoff, N. (eds.), Engineering Optimization in Design Processes. Proc. Int. Conf., Karlsruhe Nuclear Research Center, Germany, Sept. 3–4, 1990, 201–210, Springer

    Google Scholar 

  12. Rasmussen, J.: Structural optimization by accumulated function approximation. Institute of Mechanical Engineering, Aalborg University, Denmark. Report No. 20, 1990.

    Google Scholar 

  13. Rikards, R.: Elaboration of optimal design models for objects from data of experiments. In: Pedersen, P. (ed.), Optimal Design with Advanced Materials, The FrithiofNiordson Volume, 1993, 149–162, Elsevier

    Google Scholar 

  14. Schaller, A.: Design optimization with the ANSYS program: An engineer’s approach. Proc. Int. Conf. StruCoMe 88, Paris, 2–4 November 1988, Vol. 1, 381–395

    Google Scholar 

  15. Schmit, L.A.; Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12 (1974), 692–699

    Article  Google Scholar 

  16. Schoofs, A.J.G.: Experimental design and structural optimization. Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1987

    Google Scholar 

  17. Schoofs, A.J.G.; Klink, M.B.M.; van Campen, D.H.: Approximation of structural optimization problems by means of designed numerical experiments. Structural Optimization 4 (1993), 206–212

    Article  Google Scholar 

  18. Toropov, V.V.: Simulation approach to structural optimization. Structural Optimization 1 (1989), 37–46

    Article  Google Scholar 

  19. Toropov, V.V.: Multipoint approximation method in optimization problems with expensive function values. In: A. Sydow (ed.), Computational Systems Analysis 1992, 207–212, 1992, Elsevier

    Google Scholar 

  20. Toropov, V.V.; van der Giessen, E.: Parameter identification for nonlinear constitutive models: Finite Element simulation — Optimization — Nontrivial experiments. In: Pedersen, P. (ed.), Optimal Design with Advanced Materials, The Frithi of Niordson Volume, 1993, 113–130, Elsevier

    Google Scholar 

  21. Toropov, V.V.; Filatov, A.A.; Polynkin, A.A: Multiparameter structural optimization using FEM and multipoint explicit approximations. Structural Optimization 6 (1993), 7–14

    Article  Google Scholar 

  22. Svanberg, K.: The method of moving asymptotes — a new method for structural optimization. Int. J. Num. Meth. Eng. 24 (1987), 359–373

    Article  Google Scholar 

  23. Vanderplaats, G.N.: Efficient algorithm for numerical airfoil optimization. AIAA J., Aircraft 16 (1979), 842–847

    Article  Google Scholar 

  24. Vanderplaats, G.N.: Effective use of numerical optimization in structural design. In: Finite Elements in Analysis and Design 6 (1989), 97–112, Elsevier

    Google Scholar 

  25. White, K.P., Jr.; Hollowell, W.T.; Gabler, H.C. III; Pilkey, W.D.: Simulation optimization of the crashworthiness of a passenger vehicle in the frontal collisions using response surface methodology. SAE Transactions 94 (1985), 3.798–3.811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toropov, V.V. (1995). Multipoint Approximation Method for Structural Optimization Problems with Noisy Function Values. In: Marti, K., Kall, P. (eds) Stochastic Programming. Lecture Notes in Economics and Mathematical Systems, vol 423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88272-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88272-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58996-9

  • Online ISBN: 978-3-642-88272-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics