Advertisement

Mechanisms of electriciation in solid-solid contact

  • Leonard B. Loeb

Abstract

It is precisely in this area that the greatest confusion exists. Aside from the complications produced by the action of films of moisture, electrolytic effects and/or the formation of electrolytic Helmholtz double layers, or by films of impurity, phenomena are complicated by other factors. These include the manner in which measurements are made, the failure to avoid external electrical fields, the character of the contacts, e.g., sliding, rubbing, or rolling contact or just normal contact with no lateral motion. In some cases, there was a disregard of the electrostatic circuit arrangements and failure properly to analyze the circuit as a whole including, especially, the electrometer capacity. The effect of heating either at local contact points or asymmetrical heating of the same substances has been ignored. Heating may involve local fusion, etc. Again, the nature and state of surfaces, possibly exposure of crystal planes and the removal of oriented layers of ions as a result of mechanical or heat stresses. Finally, assuming that the measurements are conducted under controlled conditions designed to avoid all unnecessary complicating factors when one regards the electrification on contact of the whole gamut of inorganic, organic, insulating and conducting solids known and used in study, the various possible interchanges of charged carriers leads to such an extensive range of interactions that it is virtually impossible to derive any basic understanding of the mechanisms at work. This is especially true when one turns to such complex substances as vulcanite, (hard rubber), the various plastics, sealing wax, amber, cat’s fur, silk, glass and wool commonly associated with the phenomena of static electrification.

Keywords

Work Function Borosilicate Glass Rolling Speed Fuse Quartz Average Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 94.
    Medley, J. A.: Brit. J. Appl. Phys. Suppl. 2, S 29 (1953).Google Scholar
  2. Debeau, D.: Phys. Rev. 66, 9 (1944).ADSCrossRefGoogle Scholar
  3. 96.
    Gill, E. W. B.: Phys. Rev. 74, 842 (1948).ADSCrossRefGoogle Scholar
  4. 97.
    Peterson, J. W.: Phys. Rev. 76, 1882 (1949).ADSCrossRefGoogle Scholar
  5. 98.
    Kunkel, W. B.: J. Appl. Phys. 19, 1056 (1948).ADSCrossRefGoogle Scholar
  6. 99.
    Kunkel, W. B.: J. Appl. Phys. 19, 1053 (1948).ADSCrossRefGoogle Scholar
  7. 166.
    Guest, P. A.: Static Electricity in Nature and Industry, U.S. Bureau Mines Bull. 36 B, Washington, D.C., 1933.Google Scholar
  8. 101.
    Rudge, W. A. O.: Phil. Mag. 24, 852 (1912); 25, 481 (1913).Google Scholar
  9. 102.
    Beyersdorfer, P.: Z. Ver. dtsch. Zuckerind. 72, 475 (1922).Google Scholar
  10. 103.
    Blactin, S. C., and H. Robinson: Safety Mines Research Paper 71, London 1931.Google Scholar
  11. 104.
    Walther, R., and W. Franke: Braunkohle 28, 789 (1929).Google Scholar
  12. 105.
    Böning, P.: Z. techn. Phys. 8, 385 (1927).Google Scholar
  13. 106.
    Hoag, J. B.: Ann. Petrol. Inst. Bull. 9, 181 (1928).Google Scholar
  14. 107.
    Thomas, D. G. A.: Brit. J. Appl. Phys. Suppl. 2, S 55 (1953).Google Scholar
  15. 108.
    Peterson, J. W.: J. Appl. Phys. 25, 907 (1954).ADSCrossRefGoogle Scholar
  16. 108.
    Wagner, P. E.: J. Appl. Phys. 27, 1301 (1956).ADSCrossRefGoogle Scholar
  17. 110.
    Finch, G. I.: Nature, Lond. 138, 1010 (1936).ADSCrossRefGoogle Scholar
  18. 171.
    Leise, K. H.: Z. Physik. 124, 258 (1948).ADSCrossRefGoogle Scholar
  19. 172.
    Harper, W. R.: Proc. Roy. Soc. Lond., Ser. A 231, 388 (1955).CrossRefGoogle Scholar
  20. 113.
    Loeb, L. B.: Thunderstorm Electricity, H. Byers Editor, Chap. VII, p. 150. Univ. Chicago Press 1953.Google Scholar
  21. 114.
    Simpson, G. C., and F. J. Scrase: Proc. Roy. Soc. Lond., Ser. A 177, 281 (1937).CrossRefGoogle Scholar
  22. 115.
    Pearce, D. C., and W. B. Currie: Canad. J. Res. 27, 1 (1949).Google Scholar
  23. 116.
    Chalmers, J. A. J.: Atmos. a. Terr. Phys. 2, 337 (1952).CrossRefGoogle Scholar
  24. 117.
    Norinder, H., and R. Siskna: Tellus 5, 260 (1953).ADSCrossRefGoogle Scholar
  25. Norinder, H., and R. Siskna: Ark. Geofysik 3, 59 (1954).Google Scholar
  26. 110.
    Thompson, J.: Proc. Roy. Soc. 11, 473 (1861).Google Scholar
  27. 119.
    Henry, P. S. H.: Brit. J. Appl. Phys. Suppl. 2, S 31 (1953).Google Scholar
  28. 120.
    Shaw, P. E., and C. S. JEx: Proc. Roy. Soc. Lond., Ser. A 111, 339 (1926).CrossRefGoogle Scholar
  29. 121.
    Henry, P. S. H.: Brit. J. Appl. Phys. Suppl. 2, S 9 (1953).Google Scholar
  30. 122.
    Peterson, J. W.: Phys. Rev. 76, 1882 (1949).ADSCrossRefGoogle Scholar
  31. 123.
    Rinde, C. H.: Masters Thesis in Physics. Univ. California, Berkeley 1926.Google Scholar
  32. 124.
    Loeb, L. B.: Encyclopedia Britanica, XVI Edit. Chicago, Conduction Electricity in Gases, Sect. 14. 1948.Google Scholar
  33. 125.
    Loeb, L. B.: Encyclopedia of Physics, Vol. 22, Sect. VII, pp. 506ff. Berlin: Springer 1956.Google Scholar
  34. 126.
    Bulgin, D.: Brit. J. Appl. Phys. Suppl. 2, S 83 (1953).Google Scholar
  35. 127.
    Medley, J. A.: Brit. J. Appl. Phys. Suppl. 2, S 23 (1953).Google Scholar
  36. 128.
    Forrest, J. C.: Brit. J. Appl. Phys. Suppl. 2, S 78 (1953).Google Scholar
  37. 129.
    Henry, P. S. H.: Brit. J. Appl. Phys. Suppl. 2, S 78. (1953).Google Scholar
  38. 138.
    Chapman, Seville: Cornell Aeronautical Laboratory, Report C.A.L. 68, March, 1956Google Scholar
  39. 139.
    Bennett, W. H.: Electrical Engineering, Oct. 1948.Google Scholar
  40. 131.
    Loeb, L. B.: Thunderstorms and Lightning Strokes, Modern Physics for the Enginner, Edit. by L. N. Ridenour, Chap. 13, p. 331. New York: McGraw-Hill 1954.Google Scholar
  41. 132.
    L. B., Gunn, R, Kuettner: J. at. 250 Centennial Celebration in honor of Benjamin Franklin, Amer: Acad. Arts and Sci., Cambridge, Mass., Jan., 1956 (to be published under title Atmospheric Explorations John Wiley and Sons, NewYork 1958 ).Google Scholar
  42. 133.
    L. B., Gunn Thunderstorm Electricity, H. Byers, Editor, loc. cit., Chap. XVI, p. 335.Google Scholar
  43. 134.
    Schonland, B. F. J.: Proc. Roy. Soc. Lond., Ser. A 235, 433 (1956).CrossRefGoogle Scholar
  44. 135.
    Böning, P.: Other early papers. Arch. Elektrochem. 1928 and on.Google Scholar
  45. Böning, P.: A book entitled Elektrische Isolierstoffe, In Verhalten auf Grund der Ionenadsorption an inneren Grenzflächen. Braunschweig: Vieweg & Sohn 1938.Google Scholar
  46. Böning, P.: Kolloid-Z. 92, 136, 1940CrossRefGoogle Scholar
  47. Böning, P.: Kolloid-Z. 94, 31 (1941).CrossRefGoogle Scholar
  48. Böning, P.: Ober das Auftreten elektrischer Ladungen bei Strömen isolierender Flüssigkeiten durch Faserstoffe. Diss. Braunschweig 1926. Staubelektrizität Z. Techn. Phys. 8, 385 (1927).Google Scholar
  49. Böning, P.: Theorie der Aufladungserscheinungen an Staub, P.pier und Spinnstoffen. Elektrotechn. Z., Ausg. A, 73, H. 20 (1952).Google Scholar
  50. Böning, P.: Die universelle Bedeutung der Ionenadsorption in Isolierstoffen. Z. angew. Phys. 8, 516–520 (1956).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Leonard B. Loeb
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations