Diffraction from Periodic Structures

  • Harald Ibach
  • Hans Lüth

Abstract

A direct imaging of atomic structures is nowadays possible using the high-resolution electron microscope, the field ion microscope, or the tunnel microscope. Nonetheless, when one wishes to determine an unknown structure, or make exact measurements of structural parameters, it is necessary to rely on diffraction experiments. The greater information content of such measurements lies in the fact that the diffraction process is optimally sensitive to the periodic nature of the solid’s atomic structure. Direct imaging techniques, on the other hand, are ideal for investigating point defects, dislocations, and steps, and are also used to study surfaces and interfaces. In other words, they are particularly useful for studying features that represent a disruption of the periodicity.

Keywords

Nickel Graphite Platinum Cobalt Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.1
    C.J. Davisson, L.H. Germer: Nature 119, 558 (1927);ADSCrossRefGoogle Scholar
  2. I.1a
    C.J. Davisson, L.H. Germer: Phys. Rev. 30, 705 (1927)ADSCrossRefGoogle Scholar
  3. I.2
    I. Estermann, O. Stern:Z. Phys. 61, 95 (1930)ADSCrossRefGoogle Scholar
  4. I.3
    G. Comsa, G. Mechtersheimer, B. Poelsema, S. Tomoda: Surface Sci. 89, 123 (1979)ADSCrossRefGoogle Scholar
  5. I.4
    H. H. Stiller: Private communicationGoogle Scholar
  6. I.5
    G.F. Bacon: Neutron Diffraction, 2nd edn. (Oxford Univ. Press, Oxford 1962)Google Scholar
  7. I.6
    C.G. Shull, S. Siegel: Phys. Rev. 75, 1008 (1949)ADSCrossRefGoogle Scholar
  8. II.1
    U. Bonse, W. Graeff, G. Materlik: Rev. Phys. Appl. 11, 83 (1976); U. Bonse: Private communication (1979)CrossRefGoogle Scholar
  9. II.2
    W. Hartmann: In X-Ray Optics, ed. by H.J. Queisser, Topics Appl. Phys. Vol. 22 (Springer, Berlin, Heidelberg 1977) p. 191CrossRefGoogle Scholar
  10. II.3
    W. Hartmann: Private communicationGoogle Scholar
  11. 3.1
    W. Marshall, S.W. Lovesey: Theory of Thermal Neutron Scattering (Clarendon, Oxford 1971)Google Scholar
  12. 3.2
    L.D. Landau, E.M. Lifschitz: Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, Oxford 1960)Google Scholar
  13. 3.3
    J. B. Pendry: Low Energy Electron Diffraction (Academic, London 1974)Google Scholar

Further Reading

  1. Bacon G.F.: Neutron Diffraction, 2nd edn. (Oxford Univ. Press, Oxford 1962)Google Scholar
  2. Dachs H. (ed.): Neutron Diffraction, Topics Curr. Phys., Vol. 6 (Springer, Berlin, Heidelberg 1978)Google Scholar
  3. Lovesey S., Springer T. (eds.): Dynamics of Solids and Liquids by Neutron Scattering. Topics Curr. Phys., Vol. 3 (Springer, Berlin, Heidelberg 1977)Google Scholar
  4. Pinsker Z.G.: Dynamical Scattering of X-Rays in Crystals, Springer Ser. in Solid-State Sci., Vol. 3 (Springer, Berlin, Heidelberg 1978)CrossRefGoogle Scholar
  5. Sellin A. (ed.): Structure and Collisions of Ions and Atoms, Topics Curr. Phys., Vol. 5 (Springer, Berlin, Heidelberg 1978)Google Scholar
  6. Summer Course on Material Science, Antwerp 1969: “Modern Diffraction and Imaging Techniques in Material Science”, ed. by S. Amelinckx, R. Gevers, G. Remaut, J. Van Landuyt (North Holland, Amsterdam 1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Harald Ibach
    • 1
    • 3
  • Hans Lüth
    • 2
    • 3
  1. 1.Institut für Grenzflächenforschung und VakuumphysikForschungszentrum Jülich GmbHJülichGermany
  2. 2.Institut für Schicht- und IonentechnikForschungszentrum Jülich GmbHJülichGermany
  3. 3.Rheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations