Advertisement

Inelastic Scattering: Coupled-State Approach

  • Byung Chan Eu
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 26)

Abstract

The semi classical method for elastic scattering described in the previous chapter can be generalized to obtain the wave functions for inelastic transitions in a semiclassical approximation. We approach the problem from the viewpoint of the time-independent theory. The question then centers around how one might obtain the WKB wave functions for a system of coupled Schrödinger equations and construct the S matrix therefrom. There are a number of possible ways to go about it; they may be classified into two basically distinctive approaches. In one method the coupled Schrödinger equations are converted into a set of coupled (nonlinear) Riccati equations [5.1–5] generalizing the Riccati equation arising in the phase-amplitude method for one-dimensional Schrödinger equations. Alternatively, they are converted into coupled integral equations for generalized phases [5.6,7]. In the other method, the coupled second-order equations are converted into coupled first-order linear differential equations. When they are exactly solved, both methods should give the same results, but since that is not the case, there may be numerical differences in their results. Although there has never been a numerical comparison made between the two approaches, the latter approach seems to have an advantage in that it is easier to deal with linear equations than nonlinear ones. For this reason and also for lack of space we shall consider only the linear differential equation approach.

Keywords

Inelastic Scattering Schrodinger Equation Semiclassical Theory Adiabatic Representation Classical Turning Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    G.J. Kynch: Proc. Phys. Soc. London Ser. A65, 83 (1952)MathSciNetADSCrossRefGoogle Scholar
  2. 5.2
    G. Zemach: Nuovo Cim. 33, 939 (1964)MathSciNetCrossRefGoogle Scholar
  3. 5.3
    A. Degasperis: Nuovo Cim. 34, 1667 (1964)MathSciNetMATHCrossRefGoogle Scholar
  4. 5.4
    J. R. Cox: Nuovo Cim. 37, 474 (1965CrossRefGoogle Scholar
  5. 5.5
    F. Calogero: Variable Phase Approach to Potential Scattering (Academic, New York 1967)MATHGoogle Scholar
  6. 5.6
    C.F. Curtiss: J. Chem. Phys. 52, 4832 (1970)ADSCrossRefGoogle Scholar
  7. 5.7
    C.F. Curtiss: J. Chem. Phys. 71, 1150 (1979)MathSciNetADSCrossRefGoogle Scholar
  8. 5.8
    N.G. Van Kampen: Physica 25, 70 (1967)CrossRefGoogle Scholar
  9. 5.9
    B.C. Eu: J. Chem. Phys. 52, 1882 (1970)ADSCrossRefGoogle Scholar
  10. 5.10
    B.C. Eu: J. Chem. Phys. 52, 3903 (1970)ADSCrossRefGoogle Scholar
  11. 5.11
    E.C.G. Stückelberg: Helv. Phys. Acta 5, 370 (1932)Google Scholar
  12. 5.12
    L. Landau: Phys. Z. Sowjet Union 1, 89 (1932); 2, 46 (1932)MATHGoogle Scholar
  13. 5.13
    B.C. Eu: J. Chem. Phys. 55, 5600 (1971)MathSciNetADSCrossRefGoogle Scholar
  14. 5.14
    B.C. Eu: J. Chem. Phys. 56, 2507 (1972)ADSCrossRefGoogle Scholar
  15. 5.15
    B.C. Eu, T.P. Tsien: Phys. Rev. A1, 648 (1973)ADSCrossRefGoogle Scholar
  16. 5.16
    S.K. Kim: J. Math. Phys. 10, 1225 (1969)ADSMATHCrossRefGoogle Scholar
  17. 5.17
    S.K. Kim: J. Math. Phys. 20, 2153 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 5.18
    S.K. Kim: J. Math. Phys. 20, 2159 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 5.19
    U.I. Cho, B.C. Eu: Mol. Phys. 32, 1 (1976)ADSCrossRefGoogle Scholar
  20. 5.20
    U.I. Cho, B.C. Eu: Mol. Phys. 32, 18 (1976)ADSGoogle Scholar
  21. 5.21
    R.J. Cross, Jr.: J. Chem. Phys. 51, 5163 (1969)ADSCrossRefGoogle Scholar
  22. 5.22
    M. A. Wartell, R.J. Cross, Jr.: J. Chem. Phys. 55, 4983 (1971)ADSCrossRefGoogle Scholar
  23. 5.23
    M. E. Riley: Phys. Rev. A8, 742 (1973)ADSCrossRefGoogle Scholar
  24. 5.24
    U.I. Cho, B.C. Eu: J. Chem. Phys. 61, 1172 (1974)ADSCrossRefGoogle Scholar
  25. 5.25
    U.I. Cho, B.C. Eu: Chem. Phys. Lett. 31, 181 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Byung Chan Eu
    • 1
  1. 1.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations