Advertisement

Mathematical Preparation and Rules of Tracing

  • Byung Chan Eu
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 26)

Abstract

Few equations of motion are solvable in terms of known analytic functions in physics and chemistry. We are often compelled to look for some approximate solutions or physical models which yield exactly solvable equations since they furnish more insight into the nature of the system of interest than the exact, but numerical solutions. Frequently, approximations are made on physical rather than on mathematical grounds. Of course, this does not mean that mathematics is completely ignored.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    H. Poincaré: Acta Math. VIII, 295 (1886)CrossRefGoogle Scholar
  2. 2.2
    E.T. Whittaker, G.N. Watson: Modern Analysis, 4th ed. (Cambridge University Press, London 1952)Google Scholar
  3. 2.3
    G.G. Stokes: Trans. Cambridge Philos. Soc. 9, 165 (1856);Google Scholar
  4. 2.3a
    G.G. Stokes: Trans. Cambridge Philos. Soc. 10, 105 (1857);ADSGoogle Scholar
  5. 2.3b
    G.G. Stokes: Trans. Cambridge Philos. Soc. 11, 412 (1871)Google Scholar
  6. 2.4
    P.M. Morse, H. Feshbach: Methods of Theoretical Physics (McGraw-Hill, New York 1953)MATHGoogle Scholar
  7. 2.5
    H. Jeffreys: Asymptotic Approximations (Oxford University Press, London 1962)MATHGoogle Scholar
  8. 2.6
    A. Erdelyi: Asymptotic Expansions (Dover, New York 1956)MATHGoogle Scholar
  9. 2.7
    J. Liouville: J. Math. Pures Appl. 2, 16 (1837)Google Scholar
  10. 2.8
    J. Horn: Math. Ann. 52, 271 (1899)MathSciNetMATHCrossRefGoogle Scholar
  11. 2.9
    Lord Rayleigh: Proc. R. Soc. London, Ser. A86, 207 (1912)ADSCrossRefGoogle Scholar
  12. 2.10
    G. Wentzel: Z. Phys. 38, 518 (1926)ADSCrossRefGoogle Scholar
  13. 2.11
    H.A. Kramers: Z. Phys. 39, 828 (1926)ADSCrossRefGoogle Scholar
  14. 2.12
    M.L. Brillouin: J. Phys. Radium 7, 353 (1926)CrossRefGoogle Scholar
  15. 2.13
    G.N. Watson: Theory of Bessel Functions (Cambridge University Press, London 1966)MATHGoogle Scholar
  16. 2.14
    M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (NBS, Washington, DC 1964)MATHGoogle Scholar
  17. 2.15
    J. Heading: An Introduction to Phase Integral Methods (Methuen, London 1962)MATHGoogle Scholar
  18. 2.16
    A. Zwaan: Intensitäten im Ca-Funkenspectrum, Ph.D. Dissertation, Utrecht (1929)Google Scholar
  19. 2.17
    E.C. Kemble: The Fundamental Principles of Quantum Mechanics (McGraw-Hill, New York 1937)Google Scholar
  20. 2.18
    R.E. Langer: Bull. Amer. Math. Soc. (2) 40, 545 (1934);MathSciNetCrossRefGoogle Scholar
  21. 2.18a
    R.E. Langer: Phys. Rev. 51, 669 (1937);ADSMATHCrossRefGoogle Scholar
  22. 2.18b
    R.E. Langer: Commun. Pure Appl. Math. 3, 427 (1950);MATHCrossRefGoogle Scholar
  23. 2.18c
    R.E. Langer: Trans. Am. Math. Soc. 84, 144 (1957)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Byung Chan Eu
    • 1
  1. 1.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations