A New Approach to Adaptive Filters

  • Teuvo Kohonen
Part of the Springer Series in Information Sciences book series (SSINF, volume 8)


The early works around 1960 on learning machines may be characterized as attempts to implement artificial intelligence using formal models of neurons and Perceptron networks, obviously in the hope that more and more complex functions would gradually evolve from such structures. There is no doubt about the biological organisms having that fundamental organization. Why was the success in artificial constructs not straightforward as expected? Below I am aiming at a critical analysis, mainly with an objective to find amendments to the early ideas.


Input Vector Asymptotic Solution Input Pattern Control Effect Projection Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    R.J. MacGregor, R.M. Oliver: Kybernetik 16, 53 (1974)PubMedCrossRefGoogle Scholar
  2. 4.2
    D.H. Perkel: Comput. Biomed. Res. 9, 31 (1976)PubMedCrossRefGoogle Scholar
  3. 4.3
    A.L. Hodgkin, A.F. Huxley: J. Physiol. 117, 500 (1952)PubMedGoogle Scholar
  4. 4.4
    S. Grossberg: Kybernetik 10, 49 (1972)PubMedCrossRefGoogle Scholar
  5. 4.5
    A. Lansner: Information Processing in a Network of Model Neurons: A Computer Simulation Study, in TRITA-NA-8211, The Royal Inst of Technology, Stockholm (1982)Google Scholar
  6. 4.6
    T. Kohonen: Biol. Cyb. 43, 59 (1982)CrossRefGoogle Scholar
  7. 4.7
    Papers delivered by W. Rail and G. Shepherd at the Symp. “Computer Simulation in Brain Science”, Copenhagen (20–22 August, 1986); Proc. to be edited by R. Cotterill will be published by Cambridge Uni. PressGoogle Scholar
  8. 4.8
    W. Reichardt, T. Poggio: Biol. Cyb. 46, (Suppl.) 1–30 (1983)CrossRefGoogle Scholar
  9. 4.9
    W.E. Reichardt, T. Poggio (eds.): Theoretical Approaches in Neurobiology (MIT Press, Cambridge, MA 1981)Google Scholar
  10. 4.10
    S. Geman: SIAM J. Appl. Math. 36, 86 (1979)CrossRefGoogle Scholar
  11. 4.11
    E. Oja: J. Math. Biol. 15, 267 (1982)PubMedCrossRefGoogle Scholar
  12. 4.12
    T. Kohonen, E. Oja, M. Ruohonen: Adaptation of a linear system to a finite set of patterns occurring in an arbitrarily varying order. Acta Poly- tech. Scand. Math. Computer Sci. Ser. 25 (1974)Google Scholar
  13. 4.13
    E. Oja: IEEE TC-27, 65 (1979)Google Scholar
  14. 4.14
    T. Kohonen: A class of randomly organized associative memories, Acta Poly tech. Scand. Electr. Eng. Ser. 25 (1971)Google Scholar
  15. 4.15
    T. Kohonen: IEEE Trans. C-21, 353 (1972)Google Scholar
  16. 4.16
    J.A. Anderson, J.W. Silverstein, S.A. Ritz, R.S. Jones: Psych. Rev. 84, 413 (1977)CrossRefGoogle Scholar
  17. 4.17
    W.T. Reid: Riccati Differential Equations (Academic, New York 1969)Google Scholar
  18. 4.18
    J.K. Hale: Ordinary Differential Equations (Wiley, New York 1969)Google Scholar
  19. 4.19
    D.K. Faddeev, V.N. Faddeeva: Computational Methods of Linear Algebra (Freeman, San Francisco 1963)Google Scholar
  20. 4.20
    T. Kohonen, E. Oja: Biol. Cyb. 21, 85 (1976)CrossRefGoogle Scholar
  21. 4.21
    E. Oja: Int. J. Syst. Sci. 8, 1145 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Teuvo Kohonen
    • 1
  1. 1.Laboratory of Computer and Information SciencesHelsinki University of TechnologyEspoo 15Finland

Personalised recommendations