Skip to main content

Instrumental Aspects of Spatially 3-Dimensional SIMS Analysis

  • Conference paper
Secondary Ion Mass Spectrometry SIMS III

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 19))

Abstract

It has become clear from detailed ion optical analyses [1,2,3] that matching analyzer acceptance with secondary ion beam emittance is essential to obtain high transmission at given mass resolution, independent of the particular imaging principle used (scanning probe, microscope, image dissecting ion probe). Close-to-optimum matching can be obtained using a “transfer optic” system (consisting of an immersion lens immediately at the target and one or more image transfer lenses between immersion lens and mass spectrometer) as described by SLODZIAN [1,4]. Future scanning probes and microscopes therefore will have to incorporate such a system, taylored to the particular mode of analysis and primary beam illustration. When comparing in particular the ion microscope and the scanning ion microprobe mode of operation for their relative merits, it is only fair to assume the same type of double focusing spectrometer for both systems. We consider an instrument which is partially corrected for second-order aberrations [5], the most important remaining aberrations being second-order chromatic aberration and third-order aperture aberration. Without taking into account detailed ion optical properties of particular instrument designs, LIEBL [6] gives an estimate for the maximum tolerated divergence angle and the slit width s′ for such an instrument in dependence on the required mass resolution R (= M/ΔM)

$$\begin{array}{*{20}{c}} {{}^{a}x = {{{(40R)}}^{{ - {{1} \left/ {3} \right.}}}}} \\ {s' = L/20R} \\ {L = 8{{r}_{m}}} \\ \end{array}$$

where L is the total ion path length and rm the magnetic deflection radius. Owing to the second-order chromatic aberration coefficient Aδδ, the maximum allowed initial energy ΔΦch of the secondary ions is determined by

$$\Delta {{\Phi }_{ch}}=0.45V{{(R.{{A}_{\delta \delta }})}^{-1/2}}$$

where V is the final energy of the secondary ions and it has been assumed that the chromatic aberration contribution to the width of the slit image, rmAδδ(Φ/V)2, is about half the slit width s′.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Slodzian, Nat. Bur. Stand. U.S. Spec. Publ. 427 (1975)

    Google Scholar 

  2. H. Liebl, in Low Energy Ion Beams 1977, K.G. Stephens et al., eds. Conf. Ser. 38, The Inst. of Phys. (1978)

    Google Scholar 

  3. F.G. Rüdenauer, Int. J. Mass Spectrom. Ion Phys. 6, 309 (1971)

    Article  Google Scholar 

  4. G. Slodzian, in Applied-Charged Particle Optics, A. Septier, ed., Academic Press (1980)

    Google Scholar 

  5. S. Taya, PhD Thesis, Osaka Univ., Japan (March 1978)

    Google Scholar 

  6. H. Liebl, Adv. Mass Spectrom. 7A (1978)

    Google Scholar 

  7. H.W. Werner, Dev. Anpl.,Spectrosc. 7A (1969)

    Google Scholar 

  8. A. Benninghoven, F.G. Rüdenauer and H.W. Werner, in preparation

    Google Scholar 

  9. W.H. Gries and F.G. Rüdenauer, Int. J. Mass Spectrom. Ion Phys. 18, 111 (1975)

    Article  Google Scholar 

  10. P.R. Boudewijk and H.W. Werner, private communication (1981)

    Google Scholar 

  11. H.A. Storms, K.F. Brown and J.D. Stein, Anal. Chem. 49, 2023 (1977)

    Article  Google Scholar 

  12. R. Castaing and G. Slodzian, J. Microsc. 1, 395 (1962)

    Google Scholar 

  13. H. Liebl, Messtechnik 12, 358 (1972)

    Google Scholar 

  14. H. Liebl, J. Phys. E 8, 797 (1975)

    Article  ADS  Google Scholar 

  15. B.L. Bentz and H. Liebl, these proceedings

    Google Scholar 

  16. F.G. Rüdenauer, these proceedings

    Google Scholar 

  17. J. Giber, Thin Solid Films 32, 295 (1976)

    Article  ADS  Google Scholar 

  18. P. Braun, F. Viehböck and F.G. Rüdenauer, Adv. Electron. Electron Phys. in print

    Google Scholar 

  19. D.P. Leta and G.H. Morrison, Anal. Chem. 52, 277 (1980)

    Article  Google Scholar 

  20. M.A. Rudat and G.H. Morrison, Anal. Chem. 51, 1179 (1979)

    Article  Google Scholar 

  21. F.G. Rüdenauer and W. Steiger, Mikrochim. Acta (Wien), Suppl. 9, in print (1981)

    Google Scholar 

  22. B.R. Furman and G.H. Morrison, Anal. Chem. 52, 2305 (1980)

    Article  Google Scholar 

  23. D.M.Drummer and G.H. Morrison, Anal. Chem. 52, 2147 (1980)

    Article  Google Scholar 

  24. J.H. Schilling and P.A. Büger, Int. J. Mass Spectrom. Ion Phys. 27, 283 (1978)

    Article  Google Scholar 

  25. W. Steiger and F.G. Rüdenauer, Anal. Chem. 51, 2107 (1979)

    Article  Google Scholar 

  26. F.G. Rüdenauer and W. Steiger, Proc. 7th Int. Vac. Congr. (1977) p. 2535

    Google Scholar 

  27. H.W. Werner, Acta Electron. 19, 56 (1976)

    ADS  Google Scholar 

  28. F.G. Rüdenauer and W. Steiger, unpublished work

    Google Scholar 

  29. D.M. Drummer and G.H. Morrison, Anal. Chem. 52, 2117 (1980)

    Article  Google Scholar 

  30. J.D. Fassett, J.R. Roth and G.H. Morrison, Anal. Chem. 49, 2322 (1977)

    Article  Google Scholar 

  31. H.J. Liebl, US Patent No. 3517191, filed 1965

    Google Scholar 

  32. R.J. Colton, J.E. Campena, T.M. Benlak, J.J. Decorpo and J.R. Wyak, Rev. Sci. Instr. 51, 1685 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rüdenauer, F.G. (1982). Instrumental Aspects of Spatially 3-Dimensional SIMS Analysis. In: Benninghoven, A., Giber, J., László, J., Riedel, M., Werner, H.W. (eds) Secondary Ion Mass Spectrometry SIMS III. Springer Series in Chemical Physics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88152-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88152-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88154-1

  • Online ISBN: 978-3-642-88152-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics