Instrumental Aspects of Spatially 3-Dimensional SIMS Analysis

  • F. G. Rüdenauer
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 19)


It has become clear from detailed ion optical analyses [1,2,3] that matching analyzer acceptance with secondary ion beam emittance is essential to obtain high transmission at given mass resolution, independent of the particular imaging principle used (scanning probe, microscope, image dissecting ion probe). Close-to-optimum matching can be obtained using a “transfer optic” system (consisting of an immersion lens immediately at the target and one or more image transfer lenses between immersion lens and mass spectrometer) as described by SLODZIAN [1,4]. Future scanning probes and microscopes therefore will have to incorporate such a system, taylored to the particular mode of analysis and primary beam illustration. When comparing in particular the ion microscope and the scanning ion microprobe mode of operation for their relative merits, it is only fair to assume the same type of double focusing spectrometer for both systems. We consider an instrument which is partially corrected for second-order aberrations [5], the most important remaining aberrations being second-order chromatic aberration and third-order aperture aberration. Without taking into account detailed ion optical properties of particular instrument designs, LIEBL [6] gives an estimate for the maximum tolerated divergence angle and the slit width s′ for such an instrument in dependence on the required mass resolution R (= M/ΔM)
$$\begin{array}{*{20}{c}} {{}^{a}x = {{{(40R)}}^{{ - {{1} \left/ {3} \right.}}}}} \\ {s' = L/20R} \\ {L = 8{{r}_{m}}} \\ \end{array}$$
where L is the total ion path length and rm the magnetic deflection radius. Owing to the second-order chromatic aberration coefficient Aδδ, the maximum allowed initial energy ΔΦch of the secondary ions is determined by
$$\Delta {{\Phi }_{ch}}=0.45V{{(R.{{A}_{\delta \delta }})}^{-1/2}}$$
where V is the final energy of the secondary ions and it has been assumed that the chromatic aberration contribution to the width of the slit image, rmAδδ(Φ/V)2, is about half the slit width s′.


Scanning Probe Lateral Resolution Primary Beam Virtual Image Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Slodzian, Nat. Bur. Stand. U.S. Spec. Publ. 427 (1975)Google Scholar
  2. 2.
    H. Liebl, in Low Energy Ion Beams 1977, K.G. Stephens et al., eds. Conf. Ser. 38, The Inst. of Phys. (1978)Google Scholar
  3. 3.
    F.G. Rüdenauer, Int. J. Mass Spectrom. Ion Phys. 6, 309 (1971)CrossRefGoogle Scholar
  4. 4.
    G. Slodzian, in Applied-Charged Particle Optics, A. Septier, ed., Academic Press (1980)Google Scholar
  5. 5.
    S. Taya, PhD Thesis, Osaka Univ., Japan (March 1978)Google Scholar
  6. 6.
    H. Liebl, Adv. Mass Spectrom. 7A (1978)Google Scholar
  7. 7.
    H.W. Werner, Dev. Anpl.,Spectrosc. 7A (1969)Google Scholar
  8. 8.
    A. Benninghoven, F.G. Rüdenauer and H.W. Werner, in preparationGoogle Scholar
  9. 9.
    W.H. Gries and F.G. Rüdenauer, Int. J. Mass Spectrom. Ion Phys. 18, 111 (1975)CrossRefGoogle Scholar
  10. 10.
    P.R. Boudewijk and H.W. Werner, private communication (1981)Google Scholar
  11. 11.
    H.A. Storms, K.F. Brown and J.D. Stein, Anal. Chem. 49, 2023 (1977)CrossRefGoogle Scholar
  12. 12.
    R. Castaing and G. Slodzian, J. Microsc. 1, 395 (1962)Google Scholar
  13. 13.
    H. Liebl, Messtechnik 12, 358 (1972)Google Scholar
  14. 14.
    H. Liebl, J. Phys. E 8, 797 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    B.L. Bentz and H. Liebl, these proceedingsGoogle Scholar
  16. 16.
    F.G. Rüdenauer, these proceedingsGoogle Scholar
  17. 17.
    J. Giber, Thin Solid Films 32, 295 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    P. Braun, F. Viehböck and F.G. Rüdenauer, Adv. Electron. Electron Phys. in printGoogle Scholar
  19. 19.
    D.P. Leta and G.H. Morrison, Anal. Chem. 52, 277 (1980)CrossRefGoogle Scholar
  20. 20.
    M.A. Rudat and G.H. Morrison, Anal. Chem. 51, 1179 (1979)CrossRefGoogle Scholar
  21. 21.
    F.G. Rüdenauer and W. Steiger, Mikrochim. Acta (Wien), Suppl. 9, in print (1981)Google Scholar
  22. 22.
    B.R. Furman and G.H. Morrison, Anal. Chem. 52, 2305 (1980)CrossRefGoogle Scholar
  23. 23.
    D.M.Drummer and G.H. Morrison, Anal. Chem. 52, 2147 (1980)CrossRefGoogle Scholar
  24. 24.
    J.H. Schilling and P.A. Büger, Int. J. Mass Spectrom. Ion Phys. 27, 283 (1978)CrossRefGoogle Scholar
  25. 25.
    W. Steiger and F.G. Rüdenauer, Anal. Chem. 51, 2107 (1979)CrossRefGoogle Scholar
  26. 26.
    F.G. Rüdenauer and W. Steiger, Proc. 7th Int. Vac. Congr. (1977) p. 2535Google Scholar
  27. 27.
    H.W. Werner, Acta Electron. 19, 56 (1976)ADSGoogle Scholar
  28. 28.
    F.G. Rüdenauer and W. Steiger, unpublished workGoogle Scholar
  29. 29.
    D.M. Drummer and G.H. Morrison, Anal. Chem. 52, 2117 (1980)CrossRefGoogle Scholar
  30. 30.
    J.D. Fassett, J.R. Roth and G.H. Morrison, Anal. Chem. 49, 2322 (1977)CrossRefGoogle Scholar
  31. 31.
    H.J. Liebl, US Patent No. 3517191, filed 1965Google Scholar
  32. 32.
    R.J. Colton, J.E. Campena, T.M. Benlak, J.J. Decorpo and J.R. Wyak, Rev. Sci. Instr. 51, 1685 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • F. G. Rüdenauer
    • 1
  1. 1.Austrian Research Center SeibersdorfWienAustria

Personalised recommendations