Skip to main content

Supervised Classification Techniques

  • Chapter
Remote Sensing Digital Image Analysis

Abstract

The principal purpose of this Chapter is to present the algorithms used regularly for the supervised classification of single sensor remote sensing image data. These are collected in Part I. When data from a variety of sensors or sources (such as found in the integrated spatial data base of a Geographical Information System) requires analysis, or when the spatial resolution of a sensor is sufficiently high to warrant attention being paid to neighbouring pixels when performing a classification, more sophisticated analysis tools may be required. A range of these is presented in Part II, along with a treatment of the neural network method for image analysis. These techniques are conceptually more difficult than the standard procedures and have been grouped separately for that reason. It is suggested that only Part I be covered on a first reading of the material of this book; Part II can be left safely until the need arises without affecting an understanding of the remaining chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 8

  • P. Atkinson, J. L. Cushnie, J. R. Townshend and A. Wilson, 1985: Improving Thematic Mapper Land Cover Classification Using Filtered Data. International Journal of Remote Sensing, 6, 955–961.

    Article  Google Scholar 

  • J. A. Benediktsson, P.H. Swain and O. K. Esroy, 1990: Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE Trans Geoscience and Remote Sensing, 28, 540–552.

    Article  Google Scholar 

  • F. Y. Borden, D. N. Applegate, B. J. Turner, B. F. Merembeck, E. G. Crenshaw, H. M. Lachowski and D. N. Thompson, 1977: Satellite and Aircraft Multispectral Scanner Digital Data Users Manual. Technical Report ORSER-SSEL 1–77, Pennsylvania State University.

    Google Scholar 

  • R. O. Duda and P. E. Hart, 1973: Pattern Classification and Scene Analysis, N. Y., Wiley.

    Google Scholar 

  • B. C. Forster, 1982: The Derivation of Approximate Equations to Correct for the Landsat MSS Point Spread Function. Proc. Commission 1 (Primary Data Acquisition) Int. Soc. for Photogrammetry and Remote Sensing, Canberra, April, 6–10.

    Google Scholar 

  • J.E. Freund and R. E. Walpole, 1987: Mathematical Statistics, 4e, New Jersey, Prentice Hall.

    Google Scholar 

  • T D. Garvey, J. D. Lowrance and M. A. Fisher, 1981: An Inference Technique for Integrating Knowledge from Disparate Sources. Proc. 7th Int. Conf Artifical Intelligence, Vancouver, 319–325.

    Google Scholar 

  • T.D. Garvey, 1987: Evidential Reasoning for Geographic Evaluation for Helicopter Route Planning. IEEE Trans Geoscience and Remote Sensing, GE-25, 294–304.

    Google Scholar 

  • P. Gong and P. J. Howarth, 1989: Performance Analyses of Probabilistic Relaxation Methods for Land-Cover Classification. Remote Sensing of Environment, 30, 33–42.

    Article  Google Scholar 

  • P. Gong and P. J. Howarth, 1990: The Use of Structural Information for Improving Land-Cover Classification Accuracies at the Rural-Urban Fringe. Photogrammetric Engineering and Remote Sensing, 56, 67–73.

    Google Scholar 

  • R. Harris, 1985: Contextual Classification Post-Processing of Landsat Data Using a Probabilistic Relaxation Model. Int. J. Remote Sensing, 6, 847–866.

    Google Scholar 

  • G. F. Hepner, 1990: Artificial Neural Network Classification Using a Minimal Training Set: Comparison to Conventional Supervised Classification. Photogrammetric Engineering and Remote Sensing, 56, 469–473.

    Google Scholar 

  • R. L. Kettig & D. A. Landgrebe, 1976: Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects. IEEE Trans. Geoscience Electronics, GE-14, 19–26.

    Google Scholar 

  • N. Khazenie and M. M. Crawford, 1990: Spatial-Temporal Autocorrelation Model for Contextual Classification. IEEE Trans Geoscience and Remote Sensing, 28, 529–539.

    Article  Google Scholar 

  • J. Kittler and D. Pairman, 1985: Contextual Pattern Recognition Applied to Cloud Detection and Identification. IEEE Trans Geoscience and Remote Sensing, GE-23, 855–863.

    Google Scholar 

  • T. Lee, 1984: Multisource Context Classification Methods in Remote Sensing. PhD Thesis, The University of New South Wales, Kensington, Australia.

    Google Scholar 

  • T. Lee and J. A. Richards, 1985: A low Cost Classifier for Multitemporal Applications. Int. J. Remote Sensing, 6, 1405–1417.

    Article  Google Scholar 

  • T. Lee, J. A. Richards and P. H. Swain, 1987: Probabilistic and Evidential Approaches for Multi- source Data Analysis. IEEE Trans Geoscience and Remote Sensing, GE-25, 283–293.

    Google Scholar 

  • T. Lee and J. A. Richards, 1989: Pixel Relaxation Labelling Using a Diminishing Neighbourhood Effect. Proc. IGARSS’89. Vancouver, 634–637.

    Google Scholar 

  • R. P. Lippmann, 1987: An Introduction to Computing with Neural Nets. IEEE ASSP Magazine, April, 4–22.

    Google Scholar 

  • Mohn, N., L. Hjort and G. O. Storvik, 1987: A Simulation Study of Some Contextual Classification Methods for Remotely Sensed Data. IEEE Trans Geoscience and Remote Sensing, 25, 796–804.

    Article  Google Scholar 

  • W. L. Moon, 1990: Integration of Geophysical and Geological Data Using Evidential Belief Function. IEEE Trans Geoscience and Remote Sensing, 28, 711–720.

    Article  Google Scholar 

  • N.J. Nilsson, 1965: Learning Machines. N. Y., McGraw Hill.

    Google Scholar 

  • Y. H. Pao, 1989: Adaptive Pattern Recognition and Neural Networks. Reading, Addison- Wesley.

    Google Scholar 

  • S. Peleg and A. Rosenfeld, 1980: A New Probabilistic Relaxation Procedure. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-2, 362–369.

    Google Scholar 

  • T. L. Phillips (Ed.), 1973: Larsys Version 3 Users Manual, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette.

    Google Scholar 

  • J. A. Richards, D. A. Landgrebe & P. H. Swain, 1981: On the Accuracy of Pixel Relaxation Labelling. IEEE Trans. Systems, Man and Cybernetics, SMC-11, 303–309.

    Google Scholar 

  • J. A. Richards, D. A. Landgrebe & P. H. Swain, 1982: A Means for Utilizing Ancillary Information in Multispectral Classification. Remote Sensing of Environment, 12, 463–477.

    Article  Google Scholar 

  • A. Rosenfeld, R. Hummel and S. Zucker, 1976: Scene Labeling by Relaxation Algorithms. IEEE Trans Systems, Man and Cybernetics, SMC-6, 420–433.

    Google Scholar 

  • G. Shafer, 1976: A Mathematical Theory of Evidence. NJ, Princeton UP.

    Google Scholar 

  • A. H. Strahler, 1980: The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data. Remote Sensing of Environment, 10, 135–163.

    Article  Google Scholar 

  • P. H. Swain and S. M. Davis (Eds.), 1978: Remote Sensing: The Quantitative Approach, N. Y., McGraw-Hill.

    Google Scholar 

  • P.H. Swain and H. Hauska, 1977: The Decision Tree Classifier: Design and Potential. IEEE Trans. Geoscience Electronics, GE-15, 142–147.

    Google Scholar 

  • P. H. Swain, S. B. Varderman and J. C. Tilton, 1981: Contextual Classification of Multispectral Image Data. Pattern Recognition, 13, 429–441.

    Article  Google Scholar 

  • J.T. Tou and R.C. Gonzalez, 1974: Pattern Recognition Principles, Mass., Addison Wesley.

    Google Scholar 

  • E. Townsend, 1986: The Enhancement of Computer Classifications by Logical Smoothing. Photogrammetric Engineering and Remote Sensing, 52, 213–221.

    Google Scholar 

  • A. G. Wacker and D. A. Landgrebe, 1972: Minimum Distance Classification in Remote Sensing. First Canadian Symp. on Remote Sensing, Ottawa.

    Google Scholar 

  • S. D. Zenzo, R. Bernstein, S. D. Degloria and H. G. Kolsky, 1987: Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification. IEEE Trans Geoscience and Remote Sensing, 25, 805–814.

    Article  Google Scholar 

  • S.D. Zenzo, S. D. Degloria, R. Bernstein and H.G. Kolsky, 1987: Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification Experiments Using Thematic Mapper and Multispectral Scanner Sensor Data. IEEE Trans Geoscience and Remote Sensing, 25, 815–824.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richards, J.A. (1993). Supervised Classification Techniques. In: Remote Sensing Digital Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88087-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88087-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58219-9

  • Online ISBN: 978-3-642-88087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics