Advertisement

Observational Evidence for Discretization Phenomena

  • Dominic G. B. Edelen
  • Albert G. Wilson
Part of the Springer Tracts in Natural Philosophy book series (STPHI, volume 20)

Abstract

Two sets of observables are involved in the investigations of the macroscale discrete distributions described in this chapter. These are the angular diameters of galaxies and their redshifts. It has long been assumed that these parameters are independent, but evidence is given in the case of cluster galaxies for the existence of their interdependence. This interdependence leads from the discretization of diameters, discussed in Part A to the discretization of cluster redshifts, taken up in Part B.

Keywords

Observational Evidence Cluster Galaxy Elliptical Galaxy Angular Diameter Discretization Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example, Hubble, E.: Astrophys. J. 71, 231 (1930);CrossRefGoogle Scholar
  2. 1a.
    Holmberg, E.: Lund Medd. II, No. 128 (1950);Google Scholar
  3. 1b.
    Vaucouleurs, G. de: In: Handbuch der Physik, vol. LUI. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  4. 2.
  5. 3.
    Hubble, E., Tolman, R. C: Astrophys. J. 82, 302 (1935);CrossRefGoogle Scholar
  6. 3a.
    North, J. D.: The Measure of the Universe. Oxford: Claredon Press 1965.Google Scholar
  7. 4.
    Vaucouleurs, G. de: Ann. Astrophys. 11, 247 (1948).Google Scholar
  8. 5.
    Hubble, E.: Astrophys. J. 64, 321 (1926).CrossRefGoogle Scholar
  9. 6.
    If a is the major diameter and b the polar diameter of an elliptical galaxy (all assumed to be closely oblate spheriods), then the ellipticity is defined to be E = 10[(a-b)/a] and the eccentricity to be e = (a 2 -b 2)1/2 /a. Google Scholar
  10. 7.
    Vaucouleurs, G. de: Astron. J. 63, 253 (1958);CrossRefGoogle Scholar
  11. 7a.
    Humason, M. L., Mayall, U., Sandage, A. R.: Astron. J. 61, 97 (1956).CrossRefGoogle Scholar
  12. 8.
    Hoyle, F.: Cosmological Tests of Gravitational Theories. In: Proc. Int. School of Phys., vol. XX, pp. 141 – 173. New York: Academic Press 1962.Google Scholar
  13. 9.
    Shapley, H., Ames, A.: Ann. Harvard Obs. 88, 2 (1932).Google Scholar
  14. 10.
    Vaucouleurs, A. and G. de : Reference Catalogue of Bright Galaxies. Austin : University of Texas Press 1964.Google Scholar
  15. 11.
    Humason, M. L., Mayall, U., Sandage, A. R.: Astron. J. 61, 97 (1956).CrossRefGoogle Scholar
  16. 12.
    The mean value for nearby galaxies reported in the Humason-Mayall-Sandage catalogue, Astron. J. 61, 97 (1956).Google Scholar
  17. 13.
    Whenever there is two parameter discretization, there may be multi-discretizations. This is obvious in the simple case of two equi-interval discretizations. If there exist equally spaced rows and columns, then there exist equally spaced diagonals with slopes of 1:1, 1:2, 1:3. etc. Multi-discretizations may also arise in certain cases of non-equi-interval bi-discretization.Google Scholar
  18. 14.
    One of the two non-member galaxies (NGC 4458) had an excessive δP = 0.08. The other galaxy (NGC 7507) may have been of higher eccentricity and a discernable member of the orientation contamination.Google Scholar
  19. 15.
    The ambiquity in the assignment of NGC 741 (P = 1.379) can be reduced but not resolved. NGC 741 may be assigned to either Sequence 2 or 3, but not to Sequence 1. The choice is made for Sequence 2 on the basis of an apparent trend in color with branch number that NGC 741 appears to violate if placed in Sequence 3. However, the assignment to either Sequence 2 or 3 does not significantly change the mean color of either class.Google Scholar
  20. 16.
    Wilson, A. G.: Astron. J. 69, 153 (1964).CrossRefGoogle Scholar
  21. 17.
    Fowler, W. A.: In: High Energy Physics and Nuclear Structure, pp. 203 to 225. Amsterdam: North-Holland 1967.Google Scholar
  22. 18.
    See for example, Burbidge, G. R., Burbidge, E. M.: In: Handbuch der Physik, Vol. 51, p. 134. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  23. 19.
    Vaucouleurs, G. de: In: Handbuch der Physik, Vol. LUI. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  24. 20.
    Wilson, A. G.: Proc. Nat. Acad. Sci. 52, 847 (1964).CrossRefGoogle Scholar
  25. 21.
    Wilson, A. G.: Astron. J. 61, 97 (1956).CrossRefGoogle Scholar
  26. 22.
    NGC 541 frorrxZwicky, F., Humason, M. L. : Astrophys. J. 139, 269 (1964);Google Scholar
  27. 22.
    Coma from Lovasich, J. L., Mayall, W., Neyman, J., Scott, E. L.: Proc. 4th Berkeley Symp. Mathematical Statistics and Probability, p. 187. Berkeley: University of California Press 1960;Google Scholar
  28. 22a.
    Abell 2199 from Minkowski, R.: Astron. J. 66, 558 (1961); andCrossRefGoogle Scholar
  29. 22b.
    Hercules from Burbidge, G. R., Burbidge, E. M.: Astrophys. J. 130, 629 (1959).CrossRefGoogle Scholar
  30. 23.
    Godfredsen, E. A.: Astrophys. J. 139, 520 (1964).CrossRefGoogle Scholar
  31. 24.
    Maltby, P., Mathews, J. A., Moffet, A. T.: Astrophys. J. 137, 153 (1963);CrossRefGoogle Scholar
  32. 24a.
    Schmidt, M.: Astrophys. J. 141, 1 (1965).CrossRefGoogle Scholar
  33. 25.
    Wilson, A. G.: Astron. J. 70, 150 (1965).CrossRefGoogle Scholar
  34. 26.
    Uniform spheres packed in layers according to the arrangement ABCABCABC ... have centers on the surfaces of regular cuboctrahedra. With layer A as the reference layer, B layer is defined as shifted “down” by 2/sphere radii and C layer is defined as shifted “up” by 2/sphere radii.Google Scholar
  35. 27.
    Abell, G. O.: Astrophys. J. Suppl. No. 31, 3, 211 (1958).CrossRefGoogle Scholar
  36. 28.
    Zwicky, F.: Pub. Astron. Soc. Pacific 69, 518 (1957).CrossRefGoogle Scholar
  37. 29.
    Burbidge, G.: Astrophys. J. 154, L41 (1968);CrossRefGoogle Scholar
  38. 29a.
    Cowan, C. L.: Astrophys. J. 154, L 5 (1968);CrossRefGoogle Scholar
  39. 29b.
    Barbieri, C, Bonometto, S., Saggion, A. : Astrophysical Letters 2, 225 (1968);Google Scholar
  40. 29c.
    Burbidge, G. R., Burbidge, E. M.: Nature 222, 735 (1969).CrossRefGoogle Scholar
  41. 30.
    Burbidge, G.: Astrophys. J. 154, L 41 (1968).CrossRefGoogle Scholar
  42. 31.
    The generation of quasi-redshifts to augment the sample of observed redshifts reported here was carried out in 1964 before the observation of the redshifts reported by Burbidge. The prediction of the 0.061 resonance supports the usefulness of the quasi-redshift strategy.Google Scholar
  43. 32.
    For a summary discussion of these cosmic numbers see Bondi, H.: Cosmology. Cambridge: Cambridge University Press 1952.Google Scholar
  44. 33.
    Chandrasekhar, S.: Nature 139, 757 (1937).CrossRefGoogle Scholar
  45. 34.
    Wilson, A. G.: Science 165, 202 (1969);CrossRefGoogle Scholar
  46. 34.
    Wilson, A.: Hierarchical Structure in the Cosmos. In: Hierarchical Structures. Eds. Whyte, L. L., Wilson, A., and Wilson, D. New York: American Elsevier 1969.Google Scholar
  47. 35.
    Cohen, E. R., DuMond, J. W. N.: Phys. Rev. 37, 537 (1965).Google Scholar
  48. 36.
    Vaucouleurs, A. and G. de : Reference Catalogue of Bright Galaxies. Austin : University of Texas Press 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • Dominic G. B. Edelen
    • 1
  • Albert G. Wilson
    • 2
  1. 1.Center for the Application of MathematicsLehigh UniversityBethlehemUSA
  2. 2.Department of AstronomyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations