Skip to main content

Regular and Diffuse Reflection

  • Chapter
Reflectance Spectroscopy

Abstract

If a parallel beam of light is allowed to fall on the smooth surface of a solid material, two limiting cases arise for the reflected portion of the radiation: it is either reflected “specularly” (that is, as from a mirror), or it is reflected in all directions of the hemisphere uniformly. In the first case, the surface is an ideal reflecting (polished) surface, while in the second it is an ideal matte (scattering) surface. These two ideal limiting cases for a surface are never attained in practice. Even on the best mirrors, such as a mercury surface the place where a beam of light impinges (even outside the incident plane) can be seen. It is desirable, however, to consider the behaviour of such ideal surfaces in a theoretical manner, and then to proceed to the behaviour of real surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walsh, J. W. T.: Dept. Sci. Ind. Res. Ilium. Res. Techn. Pap. 2, 10 (1926);

    Google Scholar 

  2. compare Judd, D. B.: J. Res. Natl. Bur. Std. 29, 329 (1942).

    Google Scholar 

  3. See Ryde, J. W., and B. S. Cooper: Proc. Roy. Soc. London A 131, 464 (1931).

    Article  Google Scholar 

  4. See Judd, D. B.: J. Res. Natl. Bur. Std. 29, 329 (1942).

    Google Scholar 

  5. Giovanelli, R. G.: Opt. Acta 3, 127 (1956).

    Article  Google Scholar 

  6. Goos, F., and H. Hähnchen: Ann. Physik 1, 333 (1947);

    Article  Google Scholar 

  7. Goos, F., and H. Hähnchen: Ann. Physik 5, 251 (1949).

    Article  Google Scholar 

  8. See also Fragstein, C. v.: Ann. Physik 4, 271 (1949);

    Article  Google Scholar 

  9. Renard, R. H.: J. Opt. Soc. Am. 54, 1190 (1964).

    Article  Google Scholar 

  10. See Textbooks of Optics. In general the optical constants n 1 and ϰ 1 may be determined by two measurements, such as those of Rreg at two different angles of incidence, or of R and JR at a particular angle of incidence. A review of the methods is given, for example, by Wendtlandt, M. M., and H. G. Hecht: In: Reflectance Spectroscopy. Chap. II; New York: John Wiley & Sons 1966.

    Google Scholar 

  11. Nassenstein, H.: Ber. Bunsenges. 71, 303 (1967).

    CAS  Google Scholar 

  12. Lambert, J. H.: Photometria Augsburg 1760; German edition by Anding Leipzig 1892.

    Google Scholar 

  13. Witte, W.: in press.

    Google Scholar 

  14. v. Seeliger, R.: Münch. Akad. IL Kl. Sitzungsber. 18, 201 (1888).

    Google Scholar 

  15. Lommel, E.: Münch. Akad. II. Kl. Sitzungsber. 17, 95 (1887).

    Google Scholar 

  16. Bouguer, P.: Traité d’optique sur la gradation de la lumière. Paris 1760.

    Google Scholar 

  17. Zöllner, J. C. F.: Photometrische Untersuchungen (Photometric investigations). Leipzig 1865.

    Google Scholar 

  18. His assumption went back to a consideration originating with Fourier, J. B. [Ann. Chim. Phys. 4, 128 (1817)].

    Google Scholar 

  19. Pokrowski, G. I.: Z. Physik 30, 66 (1924);

    Article  Google Scholar 

  20. Pokrowski, G. I.: Z. Physik 35, 35 (1926);

    Google Scholar 

  21. Pokrowski, G. I.: Z. Physik 36, 472 (1926).

    Article  Google Scholar 

  22. Schulz, H.: Z. Physik 31, 496 (1925);

    Article  Google Scholar 

  23. Schulz, H.: Z. Techn. Physik 5, 135 (1924);

    Google Scholar 

  24. see also Middleton, W.E., and A. G. Mungall: J. Opt. Soc. Am. 42, 572 (1952).

    Article  Google Scholar 

  25. Barkas, W. W.: Proc. Phys. Soc. London 51, 274 (1939).

    Article  Google Scholar 

  26. Grabowski, L.: Astrophys. J. 39, 299 (1914).

    Article  Google Scholar 

  27. Berry, E. M.: J. Opt. Soc. Am 7, 627 (1923).

    Article  Google Scholar 

  28. Reuse, W. A.: J. Opt. Soc. Am. 40, 55 (1950).

    Article  Google Scholar 

  29. Compare the comprehensive summary of Schoenberg, E.: Handb. der Astrophysik, Vol. II, T. 1. Berlin: Springer-Verlag 1929;

    Google Scholar 

  30. Yalta, W.: Photometri-sche Untersuchungen an photographischen Papieren verschiedener Oberfläche. Jenaer Jahrbuch 1954, 91.

    Google Scholar 

  31. Bouguer, P.: Traité d’optique sur la gradation de la lumière. Paris 1760.

    Google Scholar 

  32. Ångström, K.: Wied. Ann. 26, 253 (1885).

    Google Scholar 

  33. Wright, H.: Ann. Physik 1, 17 (1900).

    Article  Google Scholar 

  34. Woronkoff, G. P., and G.J. Pokrowski:Z. Physik 20, 358 (1924);

    Article  Google Scholar 

  35. compare also Henning, F., and W. Heuse: Z. Physik 10, 111 (1922);

    Article  Google Scholar 

  36. Schulz, H.: Z. Physik 31, 496 (1925).

    Article  Google Scholar 

  37. Thaler, F.: Ann. Physik 11 (4), 996 (1903).

    Article  Google Scholar 

  38. Budde, W.: J. Opt. Soc. Am. 50, 217 (1960).

    Article  Google Scholar 

  39. Höfert, H. J., and H. Loof: Die Farbe 13, 53 (1964).

    Google Scholar 

  40. Agnew, J. T., and R. B. McQuistan: J. Opt. Soc. Am. 43, 999 (1953).

    Article  Google Scholar 

  41. Barkas, W. W.: Proc. Phys. Soc. 51, 274 (1939).

    Article  Google Scholar 

  42. S. son Stenius, Å.: Svens. Papperstidning 54, 663 (1951).

    CAS  Google Scholar 

  43. Barkas, W. W.: Proc. Phys. Soc 51, 274 (1939).

    Article  Google Scholar 

  44. Woronkoff, G. P., and G. L Pokrowski: Z. Physik 30, 139 (1924).

    Article  Google Scholar 

  45. Umov, N.: Physik Z. 6, 674 (1905);

    Google Scholar 

  46. Umov, N.: Physik Z. 13, 962 (1912);

    CAS  Google Scholar 

  47. Návrat, V.: Wiener Ber. II a, 120, 1229(1911);

    Google Scholar 

  48. Pokrorowski, G.I.: Z. Physik 32, 563(1925);

    Article  Google Scholar 

  49. Woronkoff, G. P., and G. I. Pokrowski: Z. Physik 30, 139 (1924);

    Article  Google Scholar 

  50. Woronkoff, G. P., and G. I. Pokrowski: Z. Physik 33, 860 (1925);

    Article  CAS  Google Scholar 

  51. Gorodinskii, G. M.: Opt. Spectr. 16, 59 (1964).

    Google Scholar 

  52. Kortüm, G., and R. Hamm: Ber. Bunsenges. 72, 1182 (1968);

    Google Scholar 

  53. see further: Torrance, K. E., E. M. Sparrow, and R. C. Birkebak: J. Opt. Soc. Am. 56, 916 (1966);

    Article  Google Scholar 

  54. Torrance, K. E., and E. M. Sparrow: J. Opt. Soc. Am. 57, 1105 (1967).

    Article  Google Scholar 

  55. In this connection, compare also the p. 38 cited work of Kortüm and Hamm and the dissertation of R. Hamm, Tübingen 1968.

    Google Scholar 

  56. Compare discussion meeting: Physik. Grundlagen der anwendungstechn. Eigenschaften von Pigmenten. Ber. Bunsenges. 71, 239 (1967).

    Google Scholar 

  57. Kerne, W.: J. Opt. Soc. Am. 40, 55 (1950).

    Article  Google Scholar 

  58. Woronkoff, G. P., and G. I. Pokrowski: Z. Physik 20, 358 (1924).

    Article  Google Scholar 

  59. Kortüm, G., and R. Hamm: Ber. Bimsenges. 72, 1182 (1968).

    Google Scholar 

  60. Woronkoff, G. P., and G. I. Pokrowski: Z. Physik 30, 139 (1925).

    Article  Google Scholar 

  61. Woronkoff, G. P., and G. I. Pokrowski: Z. Physik 33, 860 (1925);

    Article  CAS  Google Scholar 

  62. Umow, N. A.: Physik Z. 6, 674 (1905);

    Google Scholar 

  63. Umow, N. A.: Physik Z. 13, 962 (1912).

    Google Scholar 

  64. This is usually the case when the layer thickness is a few millimeters or more.

    Google Scholar 

  65. Duyckaerts, G.: Spectrochim. Acta 7, 25 (1955).

    CAS  Google Scholar 

  66. Otvos, J. W., H. Stone, and W. R. Harp: Spectrochim. Acta 9, 148 (1957).

    Article  CAS  Google Scholar 

  67. Gledhill, R. J., and D. B. Julian: J. Opt Soc. Am. 53, 239 (1963).

    Article  Google Scholar 

  68. Felder, B.: Helv. Chim. Acta 47, 488 (1964).

    Article  CAS  Google Scholar 

  69. Kortüm, G., and P. Haug: Z. Naturforsch. 8a, 372 (1953).

    Google Scholar 

  70. The regular reflection loss at the boundary surface in the transmission measurement was eliminated by obtaining results with two different layer thicknesses [see Schachtschabel, K.: Ann. Physik 81, 929 (1926)].

    Article  CAS  Google Scholar 

  71. Kortüm, G., and H. Schöttier: Z. Elektrochem. 57, 353 (1953).

    Google Scholar 

  72. Kortüm, G., and J. Vogel: Z. physik. Chem.N. F. 18, 110(1958).

    Article  Google Scholar 

  73. A preparation with (math), was used [see Holzmann, G.: Science 11, 550 (1950)].

    Article  Google Scholar 

  74. Kortüm, G., and P. Hang: Z. Naturforsch. 8a, 372 (1953).

    Google Scholar 

  75. Kortüm, G., and J. Vogel: Z. physik. Chem. N. F. 18, 230 (1958).

    Article  Google Scholar 

  76. Kortüm, G., and J. Vogel: Z. physik. Chem. N.F. 18, 230 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Kortüm, G. (1969). Regular and Diffuse Reflection. In: Reflectance Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88071-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88071-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88073-5

  • Online ISBN: 978-3-642-88071-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics