Advertisement

Tidal Gravity Measurements in Latin-America

  • P. Melchior
  • M. Van Ruymbeke
  • C. Poitevin
  • J. Rasson
  • B. Ducarme
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 111)

Abstract

For high precision Geodesy at the end of this century, a precise knowledge of the tidal deformations of the earth’s surface is essential in particular to carefully correct gravity and distance measurements. Absolute and field differential gravity determinations have now about the same precision, that is 10 microgals (1 μgal = 10-8 m s-2) or better in some cases.

Keywords

Ocean Tide Earth Tide Calculated Loading Tidal Gravity South American Continent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badell, C., Drewes, H., Torge, W. and Wenzel, H.G. (1982). Gravimetric Earth Tide Observations in Western Venezuela. Bull. Inform. Marées Terrestres 87, 5603–5614.Google Scholar
  2. Cartwright, D.E. and Ray, R.D. (1989). New Estimates of Oceanic Tidal Energy Dissipation from Satellite Altimetry. Geophysical Research Letters, Vol. 16, N°1, 73–76.CrossRefGoogle Scholar
  3. Chueca, R., Ducarme, B. and Melchior, P. (1985). Preliminary investigation about a quality factor of tidal gravity stations. Bull. Inform. Marées Terrestres 94, 6334–6337.Google Scholar
  4. Christodoulidis, D.C., Williamson, R., Chinn, D. and Estes, R. (1986). On the Prediction of Ocean Tides for Minor Constituents. Proceedings 10th Intern. Symposium on Earth Tides. Concejo Superior Investigaciones Cientificas, Madrid, 659–668.Google Scholar
  5. Dehant, V. and Ducarme, B. (1987). Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Planet. Int., 49, 192–212.CrossRefGoogle Scholar
  6. Dehant, V. and Zschau, J. (1989). The effect of mantle elasticity on tidal gravity: a comparison between the spherical and the elliptical Earth model. Geophys. J. 97, 549–555.CrossRefGoogle Scholar
  7. Ducarme, B. (1975). A fundamental station for Trans World Tidal Gravity Profiles. Phys. Earth Planet. Int. 11, 119–127.CrossRefGoogle Scholar
  8. Ducarme, B. (1984). A Data Bank for Earth Tides. Bull. Inform. Marées Terrestres 91, 5963–5980.Google Scholar
  9. Farrell, W.E. (1972). Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 10, 761–797.CrossRefGoogle Scholar
  10. Fiedler, G. (1961). Zusammenfassung der resultate nach 26 monatanalysen gravimetrischer Erdgezeiten registriert in Caracas. IV Symposium Int. Marées Terrestres — Commun. Observ. Roy. Belg. 188 SG 58, 122–128.Google Scholar
  11. Francis, O. and Dehant, V. (1987). Recomputation of the Green’s functions for loading estimations. Bull. Inform. Marées Terrestres 100, 6962–6986.Google Scholar
  12. De Freitas, S.R.S. and Ducarme, B. (1991). Re-analysis of brazilian tidal gravity stations with sensitivity smoothing method and comparison of tidal gravimetric factors. Bull. Inform. Marées Terrestres 111, 8099–8132.Google Scholar
  13. Melchior, P. (1983). The Tides of the Planet Earth. Pergamon Press, 2nd edition, 641 pages.Google Scholar
  14. Melchior, P. (1988). El programma mundial para el estudio de las mareas terrestres. Revista Geofisica 28, 5–39.Google Scholar
  15. Melchior, P. (1991). A check of the calibration factors of five LaCoste Romberg mod. G gravimeters used for tidal gravity measurements. Bull. Inform. Marées Terrestres, 111, 8086 –8098.Google Scholar
  16. Melchior, P., Moens, M., Ducarme, B. and Van Ruymbeke, M. (1981). Tidal loading along a profile Europe — East Africa — South Australia and the Pacific Ocean. Phys. Earth Planet. Int. 25, 71–106.CrossRefGoogle Scholar
  17. Melchior, P. and De Becker, M. (1983). A discussion of worldwide measurements of tidal gravity with respect to oceanic interactions, lithosphere heterogeneities, Earth’s flattening and inertial forces. Phys. Earth Planet. Int., 31: 27–53.CrossRefGoogle Scholar
  18. Schwiderski, E. (1980). On Charting Global Ocean Tides. Reviews of Geophysics and Space Physics 18, 243–268.CrossRefGoogle Scholar
  19. Schwiderski, E.W. (1983). Application of the NSWC Ocean Tide Models to Interactions of Oceanic and Terrestrial Tides. Proceedings 9th Int. Symposium on Earth Tides, Schweizerbart’sehe Verl. Stuttgart 419–430.Google Scholar
  20. Van Ruymbeke, M. (1984). Transformation of nine LaCoste Romberg gravimeters into zero method. Bull. Inform. Marées Terrestres 93, 6206–6228.Google Scholar
  21. Van Ruymbeke, M. (1989). A calibration system for gravimeters using a sinusoidal acceleration resulting from a vertical periodic movement. Bull. Géodésique 63, 223–235.CrossRefGoogle Scholar
  22. Venedikov, A.P. (1966). Une méthode pour l’analyse des marées terrestres à partir d’enregistrements de longueur arbitraire. Commun. Obs. Roy. Belg. 250 SG 71, 437–459.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. Melchior
    • 1
  • M. Van Ruymbeke
    • 1
  • C. Poitevin
    • 1
  • J. Rasson
    • 2
  • B. Ducarme
    • 1
  1. 1.Observatoire Royal de BelgiqueBelgium
  2. 2.Institut Royal Météorologique de BelgiqueBelgium

Personalised recommendations