Advertisement

Precipitation of Oöids and Other Aragonite Fabrics in Warm Seas

  • R. G. C. Bathurst

Abstract

The precipitation of CaCO3 from tropical sea water yields aragonite in four fabrics: oöids, needles, cement in grapestone, and intragranular filling. Reasons for this varied precipitation are tentatively considered. The stability of aragonite in sea water seems to depend on adsorption of hydrated Mg2+ on calcite so inhibiting its growth and on the, probably, less negative free energy of formation of magnesian calcite compared with calcite. In oölitic coats the tangential orientation of optic axes may depend upon “slow” adsorption of fragments of aragonitic monolayer already present in the water. The role of agitation in oöid growth is uncertain. The maximum size of oöids at about 1 mm may reflect a balance between growth and abrasion. The geographic distribution of the four fabrics seems to depend mainly on the amount of movement of the bed load.

Keywords

Standard Free Energy Crystal Face Magnesian Calcite Negative Free Energy Beach Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bathurst, R. G. C.: Boring algae, micrite envelopes and lithification of molluscan biosparites. Geol. J. 5, 15–32 (1966).CrossRefGoogle Scholar
  2. Bathurst, R. G. C. Oölitic films on low energy carbonate sand grains, Bimini lagoon, Bahamas. mar. Geol. 5, 89–109 (1967 a).Google Scholar
  3. Bathurst, R. G. C. Sub-tidal gelatinous mat, sand stabilizer and food, Great Bahama Bank. J. Geol. 75, 736–738 (1967b).Google Scholar
  4. Berner, R. A.: Diagenesis of carbonate sediments: interaction of magnesium in sea water with mineral grains. Science 153, 188–191 (1966).CrossRefGoogle Scholar
  5. Bischoff, J. L.: Catalysis, inhibition, and the calcite-aragonite problem. II. The vateritearagonite transformation. Am. J. Sci. 266, 80–90 (1968).CrossRefGoogle Scholar
  6. Berner, R. A., and W. S. Fyfe: Catalysis, inhibition, and the calcite-aragonite problem. I. The aragonite-calcite transformation. Am. J. Sci. 266, 67–79 (1968).Google Scholar
  7. Bolin, B.: On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12, 274–281 (1960).CrossRefGoogle Scholar
  8. Brooks, R., L. M. Clark, and E. F. THURSTON: Calcium carbonate and its hydrates. Phil. Trans. Roy. Soc. London Ser. A. 243, 145–167 (1951).Google Scholar
  9. Bucher, W. H.: On oölites and spherulites. J. Geol. 26, 593–609 (1918).CrossRefGoogle Scholar
  10. Carozz1, A.: Contribution à l’étude des propriétés géométriques des oolithes. Bull. Inst. natn. genev. 58, 1–52 (1957).Google Scholar
  11. Cayeux, M.: Les Roches Sédimentaires: Roches Carbonatées, 463 p. Paris: Masson 1935.Google Scholar
  12. Chilingar, G. V., H. J. Bissell, and R. W. Fairbridge: Carbonate Rocks, Physical and Chemical Aspects, 393 p. Amsterdam • Elsevier 1966.Google Scholar
  13. Cloud, P. E., Jr.: Environment of calcium carbonate deposition west of Andros Island Bahamas. Prof. Pap. U.S. geol. Surv. 350, 1–138 (1962).Google Scholar
  14. Cullis, C. G.: The mineralogical changes observed in the cores of the Funafuti borings. In: T. G. Bonney (Editor): The Atoll of Funafuti, p. 392–420. London: The Royal Society 1904.Google Scholar
  15. Davies, C. W., and A. L. Jones: The precipitation of silver chloride from aqueous solutions.Part 2.Kinetics of growth of seed crystals. Trans. Faraday Soc. 51, 812–817 (1955).CrossRefGoogle Scholar
  16. Donahue, J.: Laboratory growth of pisolite grains. J. Sediment. Petrol. 35, 251–256 (1965).Google Scholar
  17. Freeman, T.: Quiet water oölites from Laguna Madre, Texas. J. Sediment. Petrol. 32, 475–483 (1962).Google Scholar
  18. Fyfe, W. S., and J. L. Bischoff: The calcite-aragonite problem. In: PRAY, L. C., and R C. MURRAY (Editors): Dolomitization and Limestone Diagenesis. A Symposium. Soc. Econ. Palaeont. Miner. spec. Pubis. 13, 89–111 (1965).Google Scholar
  19. Ginsburg, R. N.: Beach rock in South Florida. J. Sediment. Petrol. 23, 85–92 (1953).Google Scholar
  20. Illing, L. V.: Bahaman calcareous sands. Bull. Am. Assoc. Petrol. Geologists 38, 1–95 (1954).Google Scholar
  21. Kanwisher, J.: On the exchange of gases between the atmosphere and the sea. Deep-Sea Research 10, 195–207 (1963).Google Scholar
  22. Kitano, Y.: The behavior of various inorganic ions in the separation of calcium carbonate from a bicarbonate solution. Bull. Chem. Soc. Japan 35, 1973–1980 (1962).CrossRefGoogle Scholar
  23. Lalou, C.: Etude expérimentale de la production de carbonates par les bactéries des vases de la baie de Villefranche-sur-Mer. Ann. inst. océanogr. (Monaco) 33, 202–267 (1957).Google Scholar
  24. Li r Pmann, F.: Versuche zur Aufklärung der Bildungsbedingungen von Kalcit und Aragonit. Fortschr. Mineral. 38, 156–160 (1960).Google Scholar
  25. Monaghan, P. H., and M. A. Lytle: The origin of calcareous ooliths. J. Sediment. Petrol. 26, 111–118 (1956).Google Scholar
  26. Newell, N. D., E. G. Purdy, and J. Imbrie: Bahamian oölitic sand. J. Geol. 68, 481–497 (1960).CrossRefGoogle Scholar
  27. Nielsen, J.: The kinetics of electrolyte precipitation. J. Colloid Sci. 10, 576–586 (1955).CrossRefGoogle Scholar
  28. Pobeguin, T.: Contribution à l’étude des carbonates de calcium, précipitation du calcaire par les végétaux, comparaison avec le monde animal. Ann. sci. nat. Botan. et biol.végétale 15, 29–109 (1954).Google Scholar
  29. Rubey, W. W.: Settling velocities of gravel, sand, and silt particles. Am. J. Sci. 25, 325–338 (1933).CrossRefGoogle Scholar
  30. Rusnak, G. E.: Some observations of recent oolites. J. Sediment. Petrol. 30, 471–480 (1960).Google Scholar
  31. Shearman, D. J., and P. A. D’E. SKIpwrrH: Organic matter in Recent and ancient lime-stones and its rôle in their diagenesis. Nature (London) 208, 1310–1311 (1965).CrossRefGoogle Scholar
  32. Sorby, H. C.: The structure and origin of limestones. Proc. geol. Soc. 25, 56–95 (1879).Google Scholar
  33. Stockman, K. W., R. N. Ginsburg, and E. A. Shinn: The production of lime mud by algae in South Florida. J. Sediment. Petrol. 37, 633–648 (1967).Google Scholar
  34. Usdowski, H. E.: Der Rogenstein des norddeutschen Unteren Buntsandsteins, ein Kalk-oölith des marinen Faziesbereichs. Fortschr. Geol. Rheinld. Westf. 10, 337–342 (1963).Google Scholar
  35. Merwe, J. H.: Misfitting monolayers and oriented overgrowth. Discussions Faraday Soc. 5, 201–214 (1949).CrossRefGoogle Scholar
  36. Weyl, P. K.: The solution behaviour of carbonate materials in sea water. Exploration Pro- duction Research Division, Shell Oil Company, Publication 428, 178–228 (1967).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1968

Authors and Affiliations

  • R. G. C. Bathurst
    • 1
  1. 1.The Jane Herdman Laboratories of GeologyUniversity of LiverpoolEngland

Personalised recommendations