Advertisement

Algorithmic Methods for Real-Time Scheduling

  • K. Ecker
Conference paper
Part of the NATO ASI Series book series (NATO ASI F, volume 127)

Abstract

Task scheduling is a wide research area whose results gained increasing interest during the last decades. A great variety of different algorithmic methods has been developed. Though these methods are very often adjusted to the specifics of the various scheduling problems, there are few principles along which scheduling algorithms work. The purpose of this contribution is to give an overview on the main algorithmic approaches applied in real-time scheduling. Different methods for solving selected problem classes are discussed.

Keywords

Schedule Problem Precedence Constraint Algorithmic Method Total Tardiness Schedule Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Adolphson, and T.C. Hu, Optimal linear ordering, SIAM J. Appl. Math., Vol. 25, 1973, 403–423.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    U. Bagchi, and R. H. Ahmadi, An improved lower bound for minimizing weighted completion times with deadlines, Oper. Res., Vol. 35, 1987, 311–313.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Bellman, S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962.MATHGoogle Scholar
  4. 4.
    S. P. Bansal, Single machine scheduling to minimize weighted sum of completion times with secondary criterion — a branch-and-bound approach, European J. Oper. Res., Vol. 5, 1980, 177–181.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date constraints, Naval Res. Logist. Quart., Vol. 18, 1971, 511–517.CrossRefGoogle Scholar
  6. 6.
    P. Brucker, M.R. Garey, and D.S. Johnson, Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness, Math. Oper. Res., Vol. 2, 1977, 275–284.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J. Blaiewicz, Simple algorithms for multiprocessor scheduling to meet deadlines, Inform. Process. Lett., Vol. 6, 1977, 162–164.CrossRefGoogle Scholar
  8. 8.
    J. Blaiewicz, Scheduling preemptible tasks on parallel processors with information loss, Tech. Sci. Inform., Vol. 3, 1984, 415–420.Google Scholar
  9. 9.
    J. Blaiewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to resource constraints: classification and complexity, Discrete Appl. Math., Vol. 5, 1983, 11–24.MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Buer, R. H. Möhring, A fast algorithm for the decomposition of graphs and posets, Math. Oper. Res., Vol. 8, 1983, 170–184.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    L. Bianco, and S. Ricciardelli, Scheduling of a single machine to minimize total weighted completion time subject to release dates, Naval Res. Logist. Quart., Vol. 29, 1982, 151–167.CrossRefMATHGoogle Scholar
  12. 12.
    P. J. Brucker, Sequencing unit-time jobs with treelike precedence on in machines to minimize maximum lateness, Proceedings IX International Symposium on Mathematical Programming, Budapest, 1976.Google Scholar
  13. 13.
    R. N. Burns, Scheduling to minimize the weighted sum of completion times with secondary criteria, Naval Res. Logist. Quart., Vol. 23, 1976, 25–129.MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. G. Coffman, Jr., R. L. Graham, Optimal scheduling for two-processor systems, Acta Inform., Vol. 1, 1972, 200–213.MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. G. Coffman, Jr., M. R. Carey, Proof of the 4/3 conjecture for preemptive versus nonpreemptive two-processor scheduling, Report Bell Laboratories, Murray Hill, 1991.Google Scholar
  16. 16.
    E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, An application of bin-packing to multiprocessor scheduling, SIAM J.Comput., Vol. 7, 1978, 1–17.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Appoximation algorithms for bin packing — an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini (eds.), Algorithm Design for Computer System Design, Springer Verlag, Vienna, 1984, 49–106.Google Scholar
  18. 18.
    N.-F. Chen, C. L. Liu, On a class of scheduling algorithms for multiprocessors computing systems, in: T.-Y. Feng (ed.), Parallel Processing, Lecture Notes in Computer Science 24, Springer Verlag, Berlin, 1975, 1–16.Google Scholar
  19. 19.
    S. A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symposium on Theory of Computing, 1971, 151–158.Google Scholar
  20. 20.
    E. G. Coffman, Jr., and R. Sethi, A generalized bound on Ipt sequencing, nAiRoInformatique 10, 1976, 17–25.MathSciNetMATHGoogle Scholar
  21. 21.
    S. Chand, H. Schneeberger, A note on the single-machine scheduling problem with minimum weighted completion time and maximum allowable tardiness, Naval Res. Logist. Quart., Vol. 33, 1986, 551–557.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    M. I. Dessouky, and J. S. Deogun, Sequencing jobs with unequal ready times to minimize mean flow time, SIAM J. Comput., Vol. 10, 1981, 192–202.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. Du, J. Y-T. Leung, Scheduling tree-structured tasks with restricted execution times, Inform. Process. Lett., Vol. 28, 1988, 183–188.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    J. Du, J. Y-T. Leung, Scheduling tree-structured tasks on two processors to minimize schedule length, SIAM J. Discrete Math., Vol. 2, 1989, 176–196.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    J. Du, and J. Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Math. Oper. Res., Vol. 15, 1990, 483–495.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    H. Emmons, One machine sequencing to minimize mean flow time with minimum number tardy, Naval Res. Logist. Quart., Vol. 22, 1975, 585–592.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM J. Appl. Math., Vol. 17, 1969, 784–789, Err: SIAM J. Appl. Math., Vol. 20, 1971, 141.MathSciNetMATHGoogle Scholar
  28. 28.
    H. N. Gabow, An almost linear algorithm for two-processor scheduling, J. Assoc. Comput. Mach., Vol. 29, 1982, 766–780.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    M. R. Garey, and D. S. Johnson, Scheduling tasks with non-uniform deadlines on two processors, J. Assoc. Comput. Mach., Vol. 23, 1976, 461–467.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.MATHGoogle Scholar
  31. 31.
    M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan, Scheduling unit-time tasks with arbitrary release times and deadlines, SIAM J. Comput., Vol. 10, 1981, 256–269.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    M. R. Garey, D. S. Johnson, R. E. Tarjan, M. Yannakakis, Scheduling opposing forests, SIAM J. Algebraic and Discrete Math., Vol. 4, 1983, 72–93.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, A.n. Discrete Math., Vol. 5, 1979, 287–326.CrossRefMATHGoogle Scholar
  34. 34.
    R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech. J., Vol. 45, 1966, 1563–1581.CrossRefGoogle Scholar
  35. 35.
    W. A. Horn, Single-machine job sequencing with tree-like precedence ordering and linear delay penalties, SIAM J. Appl. Math., Vol. 23, 1972, 189–202.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    W. A. Horn, Some simple scheduling algorithms, Naval Res. Logist. Quart., Vol. 21, 1974, 177–185.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for scheduling problems: theoretical and practical results, J. Assoc. Comput. Mach., Vol. 34, 1987, 144–162.MathSciNetCrossRefGoogle Scholar
  38. 38.
    T. C. Hu, Parallel sequencing and assembly line problems, Oper. Res., Vol. 9, 1961, 841–848.CrossRefGoogle Scholar
  39. 39.
    T. Ichimori, H. Ishii, T. Nishida, Algorithm for one machine job sequencing with precedence constraints, J. Oper. Res. Soc. Japan, Vol. 24, 1981, 159–169.MathSciNetMATHGoogle Scholar
  40. 40.
    O. H. Ibarra, C. E. Kim, Approximation algorithms for certain scheduling problems, Math. Oper. Res., Vol. 3, 1978, 197–204.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, 85–104.CrossRefGoogle Scholar
  42. 42.
    H. Kise, T. Ibaraki, H. Mine, A solvable case of a one-machine scheduling problem with ready and due times, Oper. Res., Vol. 26, 1978, 121–126.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    K. R. Kalra, K. Khurana, Single machine scheduling to minimize waiting cost with secondary criterion, J. Math. Sci., Vols. 16–18, 1981–1983, 9–15.Google Scholar
  44. 44.
    M. Kunde, Beste Schranke beim LP-Scheduling, Bericht 7603, Institut fur Informatik und Praktische Mathematik, University Kiel, 1976.Google Scholar
  45. 45.
    J. R. Jackson, Scheduling a production line to minimize maximum tardiness, Research Report 43, Management Sci. Res. Project, UCLA, 1955.Google Scholar
  46. 46.
    E. L. Lawler, Sequencing to minimize the weighted number of tardy jobs, RAIRO Rech. Opr., Vol. 10, 1976, Suppl. 27–33.MathSciNetGoogle Scholar
  47. 47.
    E. L. Lawler, A `pseudopolynomial’ algorithm for sequencing jobs to minimize total tardiness, Ann. Discrete Math., Vol. 1, 1977, 331–342.MathSciNetCrossRefGoogle Scholar
  48. 48.
    E. L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence constraints, Ann. Discrete Math., Vol. 2, 1978, 75–90.MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    E. L. Lawler, Sequencing a single machine to minimize the number of late jobs, Preprint, Computer Science Division, University of California, Berkeley, 1982.Google Scholar
  50. 50.
    E. L. Lawler, Recent results in the theory of machine scheduling, in: A. Bachem, M. Grötschel, B. Korte (eds.), Mathematical Programming: The State of the Art, Bonn 1982, Springer-Verlag, Berlin, 1983, 202–234.CrossRefGoogle Scholar
  51. 51.
    J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tracts 69, Mathematisch Centrum, Amsterdam, 1977.Google Scholar
  52. 52.
    J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, W. Zhao, Algorithms for scheduling imprecise computations, Report No. UIUCDCS-R-90–1628, Department of Computer Science, University of Illinois, 1990.Google Scholar
  53. 53.
    J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under precedence constraints, Oper. Res., Vol. 26, 1978, 22–35.CrossRefMATHGoogle Scholar
  54. 54.
    J. K. Lenstra, A. H. G. Rinnoy Kan, Complexity results for scheduling chains on a single machine, European J. Oper. Res., Vol. 4, 1980, 270–275.MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    J. K. Lenstra, A. H. G. Rinnoy Kan, P. Brucker, Complexity of Machine Scheduling Problems, Ann. Discrete Math., Vol. 1, 1977, 343–362.CrossRefGoogle Scholar
  56. 56.
    J. Y-T. Leung, G. H. Young, Minimizing total tardiness on a single machine with precedence constraints, ORSA J. Comput, to appear.Google Scholar
  57. 57.
    R. NcNaughton, Scheduling with deadlines and loss functions, Management Sci., Vol. 6, 1959, 1–12.MathSciNetCrossRefGoogle Scholar
  58. 58.
    S. Miyazaki, One machine scheduling problem with dual criteria, J. Oper. Res. Soc. Japan, Vol. 24, 1981, 37–51.MathSciNetMATHGoogle Scholar
  59. 59.
    J. M. Moore, Ann job, one machine sequencing algorithm for minimizing the number of late jobs, Management Sci., Vol. 15, 1968, 102–109.CrossRefMATHGoogle Scholar
  60. 60.
    R. H. Möhrig, F. J. Radermacher, Generalized results on the polynomiality of certain weighted sum scheduling problems, Methods of Oper. Res., Vol. 49, 1985, 405–417.Google Scholar
  61. 61.
    C. L. Monma, J. B. Sidney, Optimal sequencing via modular decomposition: characterization of sequencing functions, Math. Oper. Res., Vol. 12, 1987, 2231.MathSciNetGoogle Scholar
  62. 62.
    J. H. Muller, J. Spinrad, Incremental modular decomposition, J. Assoc. Comput. Mach., Vol. 36, 1989, 1–19.MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    K. Nakajima, J. Y-T. Leung, S. L. Hakimi, Optimal two processor scheduling of tree precedence constrained tasks with two execution times, Performance Evaluation, Vol. 1, 1981, 320–330.MathSciNetMATHGoogle Scholar
  64. 64.
    M. E. Posner, Minimizing weighted completion times with deadlines, Oper. Res., Vol. 33, 1985, 562–574.MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    C. N. Potts, A Lagrangian based branch and bound algorithm for a single machine sequencing with precedence constraints to minimize total weighted completion time, Management Sci., Vol. 31, 1985, 1300–1311.MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    C. N. Potts, L. N. van Wassenhove, An algorithm for single machine sequencing with deadlines to minimize total weighted completion time, European J. Oper. Res., Vol. 12, 1983, 379–387.CrossRefMATHGoogle Scholar
  67. 67.
    S. Satin, Algorithms for scheduling independent tasks, J. Assoc. Comput. Mach., Vol. 23, 1976, 116–127.MathSciNetCrossRefGoogle Scholar
  68. 68.
    J. B. Sidney, An extension of Moore’s due date algorithm, in: S. E. Elmaghraby (ed.), Symposium on the Theory of Scheduling and Its Applications, Springer-Verlag, Berlin, 1973, 393–398.CrossRefGoogle Scholar
  69. 69.
    J. B. Sidney, Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs, Oper. Res., Vol. 23, 1975, 283–298.MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    W. E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart., Vol. 3, 1956, 59–66.MathSciNetCrossRefGoogle Scholar
  71. 71.
    J. B. Sidney, G. Steiner, Optimal sequencing by modular decomposition: polynomial algorithms, Oper. Res., Vol. 34, 1986, 606–612.MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    F. J. Villarreal, R. L. Bulfin, Scheduling a single machine to minimize the weighted number of tardy jobs, AIIE Trans., Vol. 15, 1983, 337–343.Google Scholar
  73. 73.
    P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date constraints, Naval Res. Logist. Quart., Vol. 18, 1971, 511–517.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • K. Ecker
    • 1
  1. 1.Technische Universität ClausthalClausthalGermany

Personalised recommendations