Advertisement

The Problem of Physical Reality in Contemporary Science

  • Henry Mehlberg
Conference paper
Part of the Studies in the Foundations Methodology and Philosophy of Science book series (FOUNDATION, volume 2)

Abstract

In this paper I shall explore some philosophical aspects of the present scientific view of the physical reality of the micro-cosmos. Everybody remembers, of course, that some of the most insightful and least speculative thinkers of this century have stressed the physical reality of the micro-cosmos, i. e., the physical sub-universe which is presently conceived as consisting of molecules, atoms and elementary particles. H. PoiNCARÉ1 argued that molecules are real since the number of molecules in a particular region can often be reliably determined: he felt that it would be impossible to count non-existent or unreal things, In 1927 P. W. Bridgman [1] wrote about the status of the atom: “we are now as convinced of its physical reality as of our hands and feet”. The men who keep devising increasingly powerful atomic weapons, including those who have already used them twice, probably feel in the same way.

Keywords

Quantum State Quantum Theory Quantum Level Physical Reality Inertial Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bridgman, P. W.: The logic of modern physics, p. 49. New York: MacMillan Co. 1927.Google Scholar
  2. [2]
    Kallén, G.: Quantenelektrodynamik. In: Handbuch der Physik, Bd. V/1. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  3. [3]
    Feynman, R. P.: Theory of positrons. Phys. Rev. 76, 749 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    Bohr, N.: Atomic theory and the description of nature. Cambridge: Cambridge University Press 1934.MATHGoogle Scholar
  5. [5]
    Heisenberg, W.: The physical principles of quantum mechanics. Chicago: University of Chicago Press 1930.Google Scholar
  6. [6]
    Heisenberg, W.: The Copenhagen interpretation of quantum theory. Physics and philosophy, p. 44–58. New York: Harper 1958.Google Scholar
  7. [7]
    Bunge, M.: Causality. The place of the causal principle in modern science. Cambridge, Mass.: Harvard University Press 1959.Google Scholar
  8. [8]
    Dirac, P. A. M.: The principles of quantum mechanics, p. 35ff. Oxford: Clarendon Press 1935.Google Scholar
  9. [9]
    Margenau, H.: Open vistas. Philosophical perspectives of modern science, p. 136ff. New Haven: Yale University Press 1961.Google Scholar
  10. [10]
    Weizsäcker, C. F. v.: The world view of physics. Chicago: University of Chicago Press 1952.Google Scholar
  11. [11]
    Feyerabend, P.K. On the quantum-theory of measurement. In: S. Körner, ed.: Observation and interpretation, p. 121 ff. New York: Academic Press 1957-Google Scholar
  12. [12]
    Durand, L.: On the theory of measurement in quantum mechanical systems. Phil. Sci. 27, 115–133 (1960).CrossRefGoogle Scholar
  13. [13]
    Wigner, E. P.: Die Messung von quantenmechanischen Operatoren. Z. Physik 133, 101–108 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    London, F., et E. Bauer: La théorie de l’observation en mécanique quantique. Actualités Industrielles et Scientifiques Hermann, Paris 1939.Google Scholar
  15. [15]
    Mehlberg, H.: The observational problem in quantum theory. Proc. XII Int. Philos. Congr. 1961.Google Scholar
  16. [16]
    Mehlberg, H.: Theoretical and empirical aspects of scientific theories. Proc. Int. Congr. Log. Meth. Philos. Science 1960.Google Scholar
  17. [17]
    Mehlberg, H.: The reach of science, p. 263 ff.. Toronto: University of Toronto Press 1958.Google Scholar
  18. [17]
    Mehlberg, H.: The reach of science, p. 275 ff. Toronto: University of Toronto Press 1958.Google Scholar
  19. [18]
    Ludwig, G.: Mathematische Grundlagen der Quantenmechanik, S. 61 ff. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  20. [19]
    Kompaneeyets, A. S.: Theoretical physics, p. 295ff. New York: Dower 1961.Google Scholar
  21. [20]
    Houtappel, R. M. F., H. Van Dam, and E. P. Wigner: The conceptual basis and use of the geometric invariance principles. Revs. Mod. Phys. 37, 595 (1965).ADSCrossRefGoogle Scholar
  22. [21]
    Feynman, R. P., and A. R. Hibbs: Quantum mechanics and path integrals, p. 1ff., New York: McGraw-Hill 1965.MATHGoogle Scholar
  23. [21]
    Feynman, R. P., and A. R. Hibbs: Quantum mechanics and path integrals, p. 321 ff. New York: McGraw-Hill 1965.MATHGoogle Scholar
  24. [22]
    Mehlberg, J. J.: Is a unitary approach to foundations of probability possible ? Current issues in the philosophy of science 1961.Google Scholar
  25. [23]
    Popper, K. R.: The propensity interpretation of the calculus of probability and the quantum theory. Observation and interpretation, p. 65 ff. New York: Academic Press 1957.Google Scholar
  26. [24]
    Neumann, J. v.: Die mathematischen Grundlagen der Quantenmechanik, S. 131 ff. New York: Dover 1943.Google Scholar
  27. [25]
    Segal, I. E.: Postulates for general quantum mechanics. Ann. of Math. 2, 48, 930–948 (1947).CrossRefGoogle Scholar
  28. [26]
    Mandel’shtam, L. I., I. Ye. Tamm: Izvest. Akad. Nauk. S.S.S.R. 9, 122 (1945).Google Scholar
  29. [27]
    Grünbaum, A.: Philosophical problems of space and time. New York: Alfred A. Knopf 1963.Google Scholar
  30. [28]
    Bohr, N., u. L. Rosenfeld: Zur Frage der Meßbarkeit der elektromagnetischen Feldgrößen. Det. Kgl. dansk. Vid. Selskab. 12, 8 (1933).Google Scholar
  31. [29]
    Bohr, N., u. L. Rosenfeld: Field and charge measurement in quantum and electrodynamics. Phys. Rev. 78, 794–798 (1950).ADSMATHCrossRefGoogle Scholar
  32. [30]
    Heitler, W.: Physical aspects of quantum-field theory in the quantum theory of fields. Int. Inst. Phys. 1961, p. 37ff.Google Scholar
  33. [31]
    Feynman, R. P.: The present status of quantum electrodynamics, loc. cit., p. 61 ff. Int. Inst. Phys. 1961.Google Scholar
  34. [32]
    Mehlberg, H.: Space, time and relativity. Proc. Int. Congr. Log. Meth. Phil. Sci. Amsterdam: North.-Holland Publ. Co. 1964.Google Scholar
  35. [33]
    Mehlberg, H.: Relativity and the atom. Mind, Matter, Method., p. 449ff. Minnesota: University of Minnesota Press 1966.Google Scholar
  36. [34]
    Gel’fand, I. M., P. A. Min’os, and Z. Ya. Shapiro: Representations of the rotations and Lorentz groups, p. 263ff. Oxford: Pergamon Press 1963.Google Scholar
  37. [35]
    Wigner, E. P.: Relativistic invariance in quantum mechanics. Nuovo. cimento 3, 517 (1963).MathSciNetGoogle Scholar
  38. [36]
    Bogoliubov, N. N., and D. V. Shirkov: Introduction to the theory of quantized fields, p. 200ff. New York: Interscience 1959.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • Henry Mehlberg
    • 1
  1. 1.Department of PhilosophyThe University of ChicagoUSA

Personalised recommendations