Skip to main content

Genaktion und Geninteraktion

  • Chapter
Quantitative Genetik
  • 34 Accesses

Zusammenfassung

Das Gen wird auf recht verschiedene Weise definiert. Hier folgen wir der Auffassung von Fincham (1960): Among Neurospora workers “locus” is used to mean a short segment of genetic material with a specific function, not subdivided by the interpolation of material of unrelated function.. The term “gene” is used sometimes to refer to a locus and sometimes to mean a specific allele, the meaning being generally clear from the context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Breese, E. L., and K. Mather: The organization of polygenic activity within a chromosome in Drosophila. I. Hair characters. Heredity 11, 373–395 (1957).

    Article  Google Scholar 

  • Bridges, C. B.: The origin of variations in sexual and sexlimited characters. Amer. Natur. 56, 51–63 (1922).

    Article  Google Scholar 

  • Brink, R. A.: Paramutation and chromosome organization. Quart. Rev. Biol. 35, 120–137 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Brosseau, G. E.: Genetic analysis of the male fertility factors on the Y-Chromosome of Drosophila melanogaster. Genetics 45, 257–274 (1960).

    PubMed  CAS  Google Scholar 

  • Buzzati-Traverso, A.: Identification of recessive gene heterozygotes by means of paper partition chromatography. Nature 171, 575–576 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Caspary, E.: Pleiotropic gene action. Evolution 6, 1–18 (1952).

    Article  Google Scholar 

  • Chen, J. R., M. E. Sanders, C. J. Franzke, and J. G. Ross: Genetic similarity of colchicineinduced grass-type mutants. Genetics 46, 858 (1961).

    Google Scholar 

  • Clausen, J., and W. M. Hiesey: Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Inst. Wash. Publication 615 (1958).

    Google Scholar 

  • Creech, R. G., and H. H. Cramer: Gene interaction in Ricinus communis. Agronomy J. 51, 642–644 (1959).

    Article  Google Scholar 

  • Darlington, C. D., and K. Mather: The elements of genetics. London: Allen and Unwin 1949.

    Google Scholar 

  • Dobzhansky, Th., and J. Schultz: The distribution of sex factors in the X-chromosome of Drosophila melanogaster. J. Genet. 28, 349–386 (1934).

    Article  Google Scholar 

  • East, E. M.: Heterosis. Genetics 21, 375–397 (1936).

    CAS  Google Scholar 

  • Fincham, J. R. S.: Genetically controlled differences in enzyme activity. Adv. Enzymol. 22, 1–43 (1960).

    CAS  Google Scholar 

  • Fisher, R. A.: Selective forces in wild populations of Paratettix texanus. Ann. Eugen. (Lond.) 9, 109–122 (1939).

    Article  Google Scholar 

  • Ford, E. B.: The genetics of polymorphism in the Lepidoptera. Adv. Genetics 5, 43–87 (1953).

    Article  CAS  Google Scholar 

  • Fung, Sui-Tong Chan, and J. W. Gowen: A mayor sex locus in Drosophila melanogaster. Genetics 41, 644 (1956).

    Google Scholar 

  • Gilchrist, B. M., and J. B. S. Haldane: Sex linkage and sex determination in a mosquito, Culex molestus. Hereditas 33, 175–190 (1947).

    Article  Google Scholar 

  • Green, M. M.: Spatial and functional properties at the white locus in Drosophila. Heredity 13, 303–315 (1959).

    Article  Google Scholar 

  • Gustafsson, Å.: The effect of heterozygosity on variability and vigour. Hereditas 32, 263–293 (1946).

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson, Å., N. Nybom, and U. von Wettstein: Chlorophyll factors and heterosis in barley. Hereditas 36, 383–392 (1950).

    Article  Google Scholar 

  • Hagberg, A.: Heterozygosity in erectoides mutations in barley. Hereditas 39, 161–178 (1953).

    Article  Google Scholar 

  • Haldane, J. B. S.: The statics of evolution. In: Huxley, Hardy, and Ford (eds.): Evolution as a process, 109–121. London: Allen and Unwin 1954.

    Google Scholar 

  • Haldane, J. B. S.: On the biochemistry of heterosis and the stabilization of polymorphism. Proc. Roy. Soc. London B 144, 217–220 (1955).

    Article  CAS  Google Scholar 

  • Henderson, M. T.: A consideration of the genetic explanation of heterosis. Agronomy J. 49, 123–126 (1949).

    Article  Google Scholar 

  • Holm, G.: Chlorophyll mutations in barley. Acta agr. scand. 4, 457–471 (1954).

    Article  Google Scholar 

  • Houlahan, M. B., and H. K. Mitchell: The accumulation of acid-labile, inorganic phosphate by mutants of Neurospora. Arch. Biochem. 19, 257–264 (1948).

    PubMed  CAS  Google Scholar 

  • Jones, D. F.: Heterosis resulting from degenerative changes. Genetics 30, 527–542 (1945).

    Google Scholar 

  • Jones, D. F.: Plasmagenes and chromogenes in heterosis. In: Goven (ed.): Heterosis, Chapter 14. Ames, Iowa: Iowa State College Press 1952.

    Google Scholar 

  • Jones, D. F.: Gene action in heterosis. Genetics 42, 93–103 (1957).

    PubMed  CAS  Google Scholar 

  • Kerr, W. E.: Genetic determination of castes in the genus Melipona. Genetics 35, 143–152 (1950).

    PubMed  CAS  Google Scholar 

  • Komai, T.: Semi allelic genes. Amer. Natur. 84, 381–392 (1950).

    Article  Google Scholar 

  • Lamprecht, H.: Die Bedeutung des Xanthophylls für die photische Assimilation der Pflanze. Botaniska notiser, 1945.

    Google Scholar 

  • Langridge, J.: A hypothesis of developmental selection exemplified by lethal and semi-lethal mutants of Arabidopsis. Aust. J. biol. Sci. 2, 58–68 (1958).

    Google Scholar 

  • Lewis, E. B.: Pseudoallelism and gene evolution. Cold Spr. Harb. Symp. quant. Biol. 16, 159–174 (1951).

    Article  CAS  Google Scholar 

  • Lewis, D.: Gene interaction, environment and hybrid vigor. Proc. roy. Soc. B 144, 178–185 (1955).

    Article  CAS  Google Scholar 

  • Mangelsdorf, P. C., and G. S. Fraps: A direct quantitative relationship between vitamin A in corn and the number of genes for yellow pigmentation. Science 73, 241–242 (1931).

    Article  PubMed  CAS  Google Scholar 

  • Mather, K.: Polygenic inheritance and natural selection. Biol. Rev. 18, 32–64 (1943).

    Article  Google Scholar 

  • Mather, K.: The genetical units of continuous variation. Proc. 9th int. Congr. Genet. 1, 106–123 (1954).

    Google Scholar 

  • McClintock, B.: Chromosome organization and genie expression. Cold Spr. Harb. Symp. quant. Biol. 16, 13–47 (1951).

    Article  CAS  Google Scholar 

  • Nabours, R. K., and F. M. Stebbins: Cytogenetics of the grouse locust Apotettix eurycephalus Hancock. Kans. Agr. exp. St. Tech. Bull. 67, 1–116 (1950).

    Google Scholar 

  • Nybom, N.: Studies on mutation in barley. I. Superdominant factors for internode length. Hereditas 36, 321–328 (1950).

    Article  Google Scholar 

  • Pittenger, T. H., and K. C. Atwood: Stability of nuclear proportions during growth of Neurospora heterokaryons. Genetics 41, 227–241 (1956).

    PubMed  CAS  Google Scholar 

  • Quinby, J. R., and R. E. Karper: Heterosis in Sorghum resulting from the heterozygous condition of a single gene that affects duration of growth. Amer. J. Bot. 33, 716–721 (1946).

    Article  CAS  Google Scholar 

  • Racker, E., 1959: Multienzyme systems. Amer. Natur. 93, 237–244 (1959).

    Article  CAS  Google Scholar 

  • Schuler, J. F., and G. F. Sprague: Natural mutations in inbred lines of maize and their heterotic effect. II. Genetics 41, 281–291 (1956).

    PubMed  CAS  Google Scholar 

  • Schwartz, D.: Genetic studies on mutant enzymes in maize: Synthesis of hybrid enzymes by heterozygotes. Proc. nat. Acad. Sci. (Wash.) 46, 1210–1215 (1960).

    Article  CAS  Google Scholar 

  • Sirks, M. J.: The genotypic character of some aberrant forms of Lamium. Genetica 7, 253–272 (1925).

    Article  Google Scholar 

  • Stephens, S. G.: A biochemical basis of the pseudo-allelic Anthocyanin series in Gossypium. Genetics 33, 191–214 (1948).

    CAS  Google Scholar 

  • Stephens, S. G.: Possible significance of duplication in evolution. Adv. Genetics 4, 247–265 (1951).

    Article  CAS  Google Scholar 

  • Stern, C., and E. W. Schaeffer: On wild-type iso-alleles in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 29, 361–367 (1943).

    Article  CAS  Google Scholar 

  • Stubbe, H., und K. Pirschle: Über einen monogen bedingten Fall von Heterosis bei Antirrhinum majus. Ber. dtsch. Bot. Ges. 58, 546–558 (1940).

    Google Scholar 

  • Stubbe, H., und K. Pirschle: Über mono- und digen bedingte Heterosis bei Antirrhinum majus L. Z. Vererbungsl. 85, 450–478 (1953).

    Article  CAS  Google Scholar 

  • Waddington, C. H.: The interactions of some morphogenetic genes in Drosophila melanogaster. J. Genet. 51, 243–258 (1953).

    Article  Google Scholar 

  • Wallace, B.: The effect of heterozygosity for new mutations on viability in Drosophila: A preliminary report. Proc. nat. Acad. Sci. (Wash.) 43, 404–407 (1957).

    Article  CAS  Google Scholar 

  • Wallace, B.: The average effect of radiation induced mutations on viability in Drosophila melanogaster. Evolution 12, 532–556 (1958).

    Article  Google Scholar 

  • Wallace, B.: The role of heterozygosity in Drosophila populations. Proc. 10th int. Congr. Genetics 1, 408–419 (1958).

    Google Scholar 

  • Whiting, P. W.: Multiple alleles in complementary sex determination of Habrobracon. Genetics 28, 365–382 (1943).

    PubMed  CAS  Google Scholar 

  • Whiting, P. W., and S. B. Caspary: Mormoniella Merry-Go-Rounds. J. Hered. 48, 31–35 (1957).

    Google Scholar 

  • Winge, Ø., and C. Roberts: The genes for maltose and raffinose fermentation in Saccharomyces cerevisiae, strain Yeast Foam. Compt. R. trav. lab. Carlsberg, sér. physiol. 25,

    Google Scholar 

  • 241–251 (1953).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Hiorth, G.E. (1963). Genaktion und Geninteraktion. In: Quantitative Genetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88018-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88018-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48460-5

  • Online ISBN: 978-3-642-88018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics