Skip to main content
  • 34 Accesses

Zusammenfassung

Schon Darwin (1877) führte umfangreiche Untersuchungen über die Wirkung der Inzucht bei zahlreichen Pflanzenarten aus. Seit Beginn dieses Jahrhunderts ist das Problem der Inzucht in erster Linie von amerikanischen Maisforschern wie Shull, East und Jones analysiert worden. Man unterscheidet zwischen zwei Typen von Inzuchteffekten, die schon früher (Kap. 9, III) besprochene Abspaltung von rezessiven Defekten, die in der ersten Generation der Selbstung ihren größten Umfang hat, und eine allgemeine Inzuchtdepression, die kontinuierlich von Generation zu Generation fortschreitet, bis bei Annäherung an den Zustand der absoluten Homozygotie (Sho) ein sogenanntes Inzuchtminimum erreicht wird, wonach anscheinend keine weiteren Änderungen stattfinden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams, M. W., and D. B. Shank: The relationship of heterozygosity to homeostasis in maize hybrids. Genetics 44, 777–786 (1959).

    PubMed  CAS  Google Scholar 

  • Anderson, E. G.: The application of chromosomal techniques to maize improvement. Brookhaven Symp. Biol. 9, 23–36 (1956).

    Google Scholar 

  • Baur, E.: Einführung in die Vererbungslehre. 7. Aufl. Berlin: Borntraeger 1930.

    Google Scholar 

  • Brieger, F. G.: The genetic basis of heterosis in maize. Genetics 35, 420–445 (1950).

    PubMed  CAS  Google Scholar 

  • Bruce, A. B.: The Mendelian theory of heredity and the augmentation of vigor. Science 32, 627–628 (1910).

    Article  PubMed  CAS  Google Scholar 

  • Burnham, C. R.: An „Oenothera“ or multiple translocation method of establishing homozygous lines. J. Amer. Soc. Agron. 38, 702–707 (1946).

    Article  Google Scholar 

  • Carson, H. L.: Increase in fitness in experimental populations resulting from heterosis. Proc. nat. Acad. Sci. (Wash.) 44, 1136–1141 (1958).

    Article  CAS  Google Scholar 

  • Chase, S. S.: Production of homozygous diploids of maize from monoploids. Agronomy J. 44, 263–267 (1952).

    Article  Google Scholar 

  • Chase, S. S.: Monoploids in maize. In: Gowen (ed.): Heterosis, Ch. 25, 389–399. Ames, Iowa: Iowa State College Press 1952.

    Google Scholar 

  • Coe, E. H.: A line of maize with high haploid frequency. Amer. Natur. 93, 381–382 (1959).

    Article  Google Scholar 

  • Darwin, C.: The Effects of Cross and Self Fertilization in the Vegetable Kingdom. New York: D. Appleton and Co. 1877.

    Google Scholar 

  • Dirks, V. A., J. G. Ross, and D. D. Harpstead: Colchicine-induced true-breeding chimeral sectors in flax. J. Hered. 47, 229–233 (1956).

    CAS  Google Scholar 

  • Drayner, J. M.: Self- and cross-fertility in fieldbeans (Vicia faba Linn.). J. agric. Sci. 53, 387–403 (1959).

    Article  Google Scholar 

  • East, E. M., and H. K. Hayes: Heterozygosis in evolution and in plant breeding. U.S. Dep. Agrie. Bur. Plant. Ind. Bull. 243, 1–58 (1912).

    Google Scholar 

  • East, E. M., and D. F. Jones: Inbreeding and Outbreeding. Philadelphia: J. B. Lippincott 1919.

    Book  Google Scholar 

  • Federley, H.: Das Inzuchtproblem. Handbuch Vererbungswiss. 2, 1–42 (1928).

    Google Scholar 

  • Fisher, R. A.: The Theory of Inbreeding. Edinburgh and London: Oliver and Boyd 1949.

    Google Scholar 

  • Goldschmidt, R. B., A. Hannah, and L. K. Piternick: The podoptera effect in Drosophila melanogaster. Univ. Calif. Publ. Zool. 55, 67–292 (1951).

    Google Scholar 

  • Gutierrez, M. G., and G. F. Sprague: Randomness of mating in isolated polycross plantings of maize. Genetics 44, 1075–1082 (1959).

    PubMed  CAS  Google Scholar 

  • Hagberg, A., and O. Tedin: Inter- and intraclonal crosses and inbreeding in potatoes. Hereditas 37, 280–287 (1951).

    Article  Google Scholar 

  • Hirobe, T.: An analysis of heterosis, made with the silk worm. Proc. intern. Genetics Symp. 1956, Tokyo and Kyoto, Cytologia, Suppl. Vol. 357–361 (1957).

    Google Scholar 

  • Hougas, R. W., S. J. Peloquin, and R. W. Ross: Haploids of the common potato. J. Hered. 49, 103–106 (1958).

    Google Scholar 

  • Ives, P. T.: The importance of mutation rate genes in evolution. Evolution 4, 236–252 (1950).

    Article  Google Scholar 

  • Jones, D. F.: Dominance of linked factors as a means of accounting for heterosis. Genetics 2, 466–479 (1917).

    PubMed  CAS  Google Scholar 

  • Jones, D. F.: The effects of inbreeding and crossbreeding upon development. Conn. Agr. exp. St. Bull. 207, 1–100 (1918).

    Google Scholar 

  • Jones, D. F.: The attainment of homozygosity in inbred strains of maize. Genetics 9, 405–418 (1924).

    PubMed  CAS  Google Scholar 

  • Jones, D. F.: Continued inbreeding in maize. Genetics 24, 462–473 (1939).

    PubMed  CAS  Google Scholar 

  • Jones, D. F., and P. C. Mangelsdorf: The improvement of naturally cross-pollinated plants by selecting in self-fertilized lines. I. The production of inbred strains of corn. Conn. Agr. exp. St. Bull. 266, 347–418 (1925).

    Google Scholar 

  • Jones, D. F., and P. C. Mangelsdorf: Crossed corn. Conn. Agr. exp. St. J. Bull. 273, 153–187 (1926).

    Google Scholar 

  • Jones, D. F., and H. L. Everett: Hybrid field corn. Conn. Agr. exp. St. Bull. 532 (1949).

    Google Scholar 

  • Jugenheimer, R. W.: Hybrid maize breeding and seed production. FAO Agricultural Development paper No. 62, Rome (1958).

    Google Scholar 

  • Keeble, F., and C. Pellew. The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). J. Genet. 1, 47–56 (1910).

    Article  Google Scholar 

  • Kiesselbach, T. A.: Corn investigations. Nebr. Agr. exp. St. Res. Bull. 20, 1–151 (1922).

    Google Scholar 

  • Lerner, I. M.: Genetic Homeostasis. Edinburgh and London: Oliver and Boyd 1954. 134 pp.

    Google Scholar 

  • Li, C. C.: Population genetics. University Chicago Press 1955. 366 pp.

    Google Scholar 

  • Lonnquist, J. H., and R. W. Jugenheimer: Factors affecting the success of pollination in corn. Agronomy J. 35, 923–932 (1943).

    Article  Google Scholar 

  • Macaulay, T. B.: The improvement of corn by selection and plot-inbreeding. J. Hered. 19, 57–72 (1928).

    Google Scholar 

  • Mather, K.: The genetical basis of heterosis. Proc. roy. Soc. B 144, 143–150 (1955).

    Article  CAS  Google Scholar 

  • McGill, D. P., and J. H. Lonnquist: Effects of two cycles of recurrent selection for combining ability in an open-pollinated variety of corn. Agronomy J. 47, 319–322 (1955).

    Article  Google Scholar 

  • Müntzing, A.: On the causes of inbreeding degeneration. Arch. Julius Klaus-Stiftung Vererbungsf. Ergänzungsbd. zu Bd. 20 (1945).

    Google Scholar 

  • Rees, H.: Heterosis in chromosome behaviour. Proc. roy. Soc. B 144, 150–159 (1955).

    Article  CAS  Google Scholar 

  • Rowlands, D. G.: The nature of the breeding system in the field bean (Vicia faba L.) and its relationship to breeding for yield. Heredity 12, 113–126 (1958).

    Article  Google Scholar 

  • Shull, G. H.: The genotypes of maize. Amer. Natur. 45, 234–252 (1911).

    Article  Google Scholar 

  • Shull, G. H.: Beginnings of the heterosis concept. In: J Gowen (ed.): Heterosis. Ch. 2, 14–48. Ames, Iowa: Iowa State Coll. Press 1952.

    Google Scholar 

  • Smith, L.: Haploidy in Einkorn. J. Agric. Res. 73, 291–301 (1946).

    Google Scholar 

  • Sprague, G. F.: Mais (Zea mays). In: Handb. Pflanzenzüchtung 2, 103–143 (1959).

    Google Scholar 

  • Tantawy, A. O., and E. C. R. Reeve: Studies in quantitative inheritance IX. The effects of inbreeding at different rates in Drosophila melanogaster. 2. Vererbungsl. 87, 648–667 (1956).

    Article  CAS  Google Scholar 

  • Wellhausen, E. J.: Variation of maize in Mexico and Central America, its present and future utilization. Eucarpia (Rome) 1960, 38–45.

    Google Scholar 

  • Wright, S.: Systems of mating. I–V. Genetics 6, 111–178 (1921).

    PubMed  CAS  Google Scholar 

  • Wright, S.: The effects of inbreeding and crossbreeding on guinea pigs. I. Decline in vigor. II. Differentiation among inbred families. U.S. Dep. Agr. Bull. 1090, 65 pp. (1922).

    Google Scholar 

  • Wright, S.: The effects of inbreeding and crossbreeding on guinea pigs. III. Crosses beween highly inbred lines. U.S. Dep. Agr. Bull. 1121 (1922).

    Google Scholar 

  • Wright, S.: Coefficients of inbreeding and relationship. Amer. Natur. 56, 330–338 (1922).

    Article  Google Scholar 

  • Wright, S.: Systems of mating and other papers. Ames, Iowa: Iowa State College Press 1958.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Hiorth, G.E. (1963). Inzucht. In: Quantitative Genetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88018-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88018-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48460-5

  • Online ISBN: 978-3-642-88018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics