Skip to main content

Mutationen

  • Chapter
  • 35 Accesses

Zusammenfassung

Es isr sehr einfach in den Formeln der Popularionsgenetik für die einzelnen Loki eine miniere Murationshäufigkeit von z. B. 10-5 anzunehmen. Wir dürfen aber nichr vergessen, daß solche Annahmen willkürlich sind, da die wirklichen Verhälrnisse uns ungenügend bekannt sind. Bei Drosophila ist es üblich, die Mutationen in mehrere grobe Kategorien einzuteilen, etwa nach folgendem Schema. Verschiedene Autoren

Art der Mutation

Letal und subletal

Schädlich (detrimentals)

„Sichtbar“(visibles)

Unsichtbar, subnormal

Vitalität ....

0-10%

10-85%

10-100%

> 85%

Relative Häufigkeit

8

5-30

1

X

benutzen indessen recht verschiedene Klassifikation. Nur ein geringes Prozent der Mutationen ist „sichtbar“, d. h. bei Lupenbetrachtung werden charakteristische Abweichungen von der Norm gefunden. Der Rest der Mutationen ist unsichtbar, d. h. ohne Spezialuntersuchungen erkennen wir nichts anderes als eine erhöhte Sterblichkeit auf jüngeren Stadien. Die typischen Letalfaktoren haben eine Vitalität von 0%, subletale und detrimentale Mutationen fallen in die Intervalle 0–10% und 10 bis 85% der normalen Vitalität. Die Häufigkeit der Letalfaktoren läßt sich mit relativ hoher Genauigkeit messen. Detrimentale Mutationen sind nach Muller (1954) dreibis fünfmal so häufig wie die Summe der letalen und subletalen, während andere Auroren weir niedrigere Werre fanden. Da indessen diese Karegorie von Murarionen nichr exakr analysiert worden ist, kann man diese Angaben nicht als bewiesen betrachten. Die Häufigkeit der „sichtbaren“ Mutationen hängt von der Beobachtungsgabe des Forschers sowie von den benutzten Kriterien für Mutationen ab.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Allgemeine Literatur

  • Brieger, F. G.: Populationsgenetik. In: Roemer-Rudorf, Handbudi der Pflanzenzüchtung 1, 176–224. Berlin: Parey 1958.

    Google Scholar 

  • Cold Spring Harbor Symposia on Quantitative Biology. Vol. 20: Population Genetics. 350 pgs., 1955.

    Google Scholar 

  • Dobzhansky, Th.: Genetics and the Origin of Species. 3rd ed. New York: Columbia Univ. Press 1951.

    Google Scholar 

  • Dobzhansky, Th.: A review of some fundamental concepts and problems of population genetics. Cold Spr. Harb. Symp. quant. Biol. 20, 1–15 (1955).

    Article  CAS  Google Scholar 

  • Falconer, D. S.: Introduction to Quantitative Genetics. Edinburgh: Oliver and Boyd 1960.

    Google Scholar 

  • Fisher, R. A.: The genetical theory of natural selection. Oxford: Clarendon Press 1930.

    Google Scholar 

  • Haldane, J. B. S.: The causes of evolution. New York and London: Harper 1932.

    Google Scholar 

  • Lerner, I. M.: Population genetics and animal improvement. Cambridge Univ. Press 1950.

    Google Scholar 

  • Lerner, I. M.: The Genetic Basis of Selection. New York: John Wiley; London: Chapman and Hall 1958.

    Google Scholar 

  • Li, C. C.: Population genetics. Univ. Chicago Press 1955.

    Google Scholar 

  • Sinnott, E. W., L. C. Dunn, and Th. Dobzhansky: Principles of Genetics. 5th ed. New York, Toronto, London: McGraw-Hill 1958.

    Google Scholar 

  • Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    PubMed  CAS  Google Scholar 

  • Wright, S.: The roles of mutation, inbreeding, cross-breeding and selection in evolution. Proc. 6th int. Congr. Genet. 1, 356–366 (1932).

    Google Scholar 

  • Wright, S.: Classification of the factors of evolution. Cold Spr. Harb. Symp. quant. Biol. 20, 16–24 D (1955).

    Article  CAS  Google Scholar 

Weitere Literatur

  • Arnold, C. G.: Selektive Befruchtung. Ergebn. Biol. 20, 67–96 (1958).

    Google Scholar 

  • Buzzati-Traverso, A.: Heterosis in population genetics. In: Gowen (ed.): Heterosis, Chapter 9. Arnes, Iowa: Iowa State College Press 1952.

    Google Scholar 

  • Carson, H. L.: Genetic conditions which promote or retard the formation of species. Cold Spr. Harb. Symp. quant. Biol. 24, 87–105 (1959).

    Article  CAS  Google Scholar 

  • Chetverikov, S. S.: Verh. V. int. Kongr. Vererbg. 2, 1449 (1927).

    Google Scholar 

  • Cook, R. R.: Detection of carriers of recessive genes. J. Hered. 46, 161–166 (1955).

    Google Scholar 

  • Cordeiro, A. R., and Th. Dobzhansky: Combining ability of certain chromosomes in Drosophila willistoni and invalidation of the wild-type concept. Amer. Natur. 88, 75–87 (1954).

    Article  Google Scholar 

  • Correns, C.: Versuche bei Pflanzen das Geschlechtsverhältnis zu verschieben. Hereditas 2, 1–24 (1921).

    Article  Google Scholar 

  • Da Cunha, A. B.: Genetic analysis of the polymorphism of color pattern in Drosophila polymorpha. Evolution 3, 239–251 (1949).

    Article  Google Scholar 

  • Daday, H.: Gene frequencies in wild populations of Trifolium repens. Heredity 8, 61–78 (1954).

    Article  Google Scholar 

  • Daday, H.: Gene frequencies in wild populations of Trifolium repens. II. Distribution by altitud. Heredity 8, 377–384 (1954).

    Article  Google Scholar 

  • Dobzhansky, Th., and S. Wright: Genetics of natural populations. X. Dispersion rates in Drosophila pseudoobscura. Genetics 28, 304–340 (1943).

    PubMed  CAS  Google Scholar 

  • Dobzhansky, Th., and B. Spassky: Evolutionary changes in laboratory cultures of Drosophila pseudoobscura. Evolution 1, 191–216 (1947).

    Article  Google Scholar 

  • Dobzhansky, Th., O. Pavlovsky, B. Spassky, and N. Spassky: Genetics of natural populations XXIII. Biological roll of deleterious récessives in populations of Drosophila pseudoobscura. Genetics 40, 781–796 (1955).

    PubMed  CAS  Google Scholar 

  • Dobzhansky, Th., O. Pavlovsky, B. Spassky, and N. Spassky: An extreme case of heterosis in a Central American population of Drosophila tropicalis. Proc. nat. Acad. Sci. (Wash.) 41, 289–295 (1955).

    Article  CAS  Google Scholar 

  • Dobzhansky, Th., C. Krimbas, and M. G. Krimbas: Genetics of natural populations XXIX. Is the genetic load in Drosophila pseudoobscura a mutational or a balanced load? Genetics 45, 741–753 (1960).

    PubMed  CAS  Google Scholar 

  • Dunn, L. C.: Variations in the transmission ratios of alleles through egg and sperm in Mus musculus. Amer. Natur. 94, 365–393 (1960).

    Google Scholar 

  • Edwards, J. H.: Alternatives to heterosis. Heredity 13, 415 (1959).

    Google Scholar 

  • Ford, E. B.: The genetics of polymorphism in the Lepidoptera. Adv. Genet. 5, 43–87 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Harland, S. C.: An alternation in gene frequency in Ricinus communis due to climatic conditions. Heredity 1, 121–125 (1947).

    Article  Google Scholar 

  • Harland, S. C., and A. R. H. Jackson: Advantage of the white eye mutant of Drosophila melanogaster over the wild type in an artificial environment. Heredity 12, 27–36 (1958).

    Article  Google Scholar 

  • Heribert-Nilsson, N.: Sind die induzierten Mutanten nur selektive Erscheinungen? Hereditas 15, 320–328 (1931).

    Article  Google Scholar 

  • Hiraizumi, Y., and J. F. Crow: Heterozygous effects on viability, fertility, rate of development and longevity of Drosophila chromosomes that are lethal when homozygous. Genetics 45, 1071–1083 (1960).

    PubMed  CAS  Google Scholar 

  • Ives, P. T.: The genetic structure of American populations of Drosophila melanogaster. Genetics 30, 167–205 (1945).

    PubMed  CAS  Google Scholar 

  • Jones, D. F., and P. C. Mangelsdorf: The improvement of naturally cross-pollinated plants by selection in self-fertilized lines. I. The production of inbred strains of corn. Conn. Agr. exp. St. Bull. 266, 347–418 (1925).

    Google Scholar 

  • Kalmus, H.: Adaptive and selective responses of a population of Drosophila melanogaster containing e and e+ to differences in temperature, humidity and to selection for develop mental speed. J. Genet. 47, 58–63 (1945).

    Article  Google Scholar 

  • Levene, H.: Genetic equilibrium, when more than one ecological niche is available. Amer. Natur. 87, 331–333 (1953).

    Article  Google Scholar 

  • Lewis, H. W.: Studies on a melanoma-producing lethal in Drosophila. J. exp. Zool. 126, 235–276 (1954).

    Article  Google Scholar 

  • Martin, C. P.: A non-geneticist looks at evolution. Amer. Scient. 41, 100–106 (1953).

    Google Scholar 

  • McClintock, B.: Chromosome organization and genie expression. Cold. Spr. Harb. Symp. quant. Biol. 16, 13–47 (1951).

    Article  CAS  Google Scholar 

  • McClintock, B.: Induction of instability at selected loci in maize. Genetics 38, 579–600 (1953).

    PubMed  CAS  Google Scholar 

  • McClintock, B.: Controlling elements and the gene. Cold Spr. Harb. Symp. quant. Biol. 21, 197–216 (1956).

    Article  CAS  Google Scholar 

  • McClintock, B.: The suppressor-mutator system of control of gene action. Carnegie Inst. Wash. Yearbook 57, 415–429 (1958).

    Google Scholar 

  • Mukai, T., and A. B. Burdick: Single gene heterosis associated with a second chromosome recessive lethal in Drosophila melanogaster. Genetics 44, 211–232 (1959).

    PubMed  CAS  Google Scholar 

  • Mukai, T., and A. B. Burdick: Concerning equilibria of heterotic lethals in random mating populations with particular reference to 1(2)55 i in Drosophila melanogaster. Genetics 45, 1581–1593 (1960).

    PubMed  CAS  Google Scholar 

  • Muller, H. J.: The development of the gene theory. In: L. C. Dunn (ed.): Genetics in the 20th century. Chapter 5. New York: Macmillan 1951.

    Google Scholar 

  • Muller, H. J.: The nature of genetic effects produced by radiation. In: A. Hollaender (ed.): Radiation Biology 1, 351–473 (1954).

    Google Scholar 

  • Muller, H. J.: On the relation between chromosome changes and gene mutations. Brookhaven Symp. Biol. 8, 126–147 (1956).

    PubMed  Google Scholar 

  • Pavan, C., A. R. Cordeiro, N. Dobzhansky, Th. Dobzhansky, C. Malogolowkin, B. Spassky, and M. Wedel: Concealed genic variability in Brazilian populations of Drosophila willistoni. Genetics 36, 13–30 (1951).

    PubMed  CAS  Google Scholar 

  • Prout, T.: Selection against heterozygotes for autosomal lethals in natural populations of Drosophila willistoni. Proc. nat. Acad. Sci. (Wash.) 38, 478–481 (1952).

    Article  CAS  Google Scholar 

  • Sager, R.: On the mutability of the waxy locus in maize. Genetics 36, 510–540 (1951).

    PubMed  CAS  Google Scholar 

  • Schuler, J. F., and G. F. Sprague: Gene frequencies in a strain of red yellow dent. Maize Genetics Cooperation News Letter 27, 38–39 (1952).

    Google Scholar 

  • Schwemmle, J.: Gibt es eine selektive Befruchtung? III. Biol. Zbl. 71, 152–183 (1952).

    Google Scholar 

  • Schwemmle, J., und W. Koepchen: Weitere Untersuchungen zur selektiven Befruchtung. Z. Vererbungsl. 85, 307–346 (1953).

    Article  CAS  Google Scholar 

  • Singleton, W. R.: The effect of chronic gamma radiation on endosperm mutations in maize. Genetics 39, 587–603 (1954).

    PubMed  CAS  Google Scholar 

  • Spencer, W. P.: Mutations in wild populations in Drosophila. Adv. Genet. 1, 359–402 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Stadler, L. J.: Some observations on gene variability and spontaneous mutation. The Spragg Memorial Lectures (Third Series) Michigan State College, 1942.

    Google Scholar 

  • Stadler, L. J.: Spontaneous mutation in maize. Cold Spr. Harb. Symp. quant. Biol. 16, 49–63 (1951).

    Article  CAS  Google Scholar 

  • Stern, C., G. Carson, M. Kinst, E. Novitski, and D. Uphoff: The viability of heterozygotes for lethals. Genetics 37, 413–449 (1952).

    PubMed  CAS  Google Scholar 

  • Wallace, B.: The role of heterozygosity in Drosophila populations. Proc. 10th int. Congr. Genet. 1, 408–419 (1958).

    Google Scholar 

  • Woodworth, C. M.: Illinois Corn Breeding Report. Cornell Corn Imp. Report (1930). Cfr. Cold Spr. Harb. Symp. quant. Biol. 20, 88.

    Google Scholar 

  • Wright, S.: The distribution of gene frequencies in populations. Proc. nat. Acad. Sci. (Wash.) 23, 307–320 (1937).

    Article  CAS  Google Scholar 

  • Yanofsky, C.: The tryptophan synthetase system. Bact. Rev. 24, 221–245 (1960).

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Hiorth, G.E. (1963). Mutationen. In: Quantitative Genetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88018-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88018-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48460-5

  • Online ISBN: 978-3-642-88018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics