Advertisement

Mutationen

  • Gunnar Eilert Hiorth

Zusammenfassung

Es isr sehr einfach in den Formeln der Popularionsgenetik für die einzelnen Loki eine miniere Murationshäufigkeit von z. B. 10-5 anzunehmen. Wir dürfen aber nichr vergessen, daß solche Annahmen willkürlich sind, da die wirklichen Verhälrnisse uns ungenügend bekannt sind. Bei Drosophila ist es üblich, die Mutationen in mehrere grobe Kategorien einzuteilen, etwa nach folgendem Schema. Verschiedene Autoren

Art der Mutation

Letal und subletal

Schädlich (detrimentals)

„Sichtbar“(visibles)

Unsichtbar, subnormal

Vitalität ....

0-10%

10-85%

10-100%

> 85%

Relative Häufigkeit

8

5-30

1

X

benutzen indessen recht verschiedene Klassifikation. Nur ein geringes Prozent der Mutationen ist „sichtbar“, d. h. bei Lupenbetrachtung werden charakteristische Abweichungen von der Norm gefunden. Der Rest der Mutationen ist unsichtbar, d. h. ohne Spezialuntersuchungen erkennen wir nichts anderes als eine erhöhte Sterblichkeit auf jüngeren Stadien. Die typischen Letalfaktoren haben eine Vitalität von 0%, subletale und detrimentale Mutationen fallen in die Intervalle 0–10% und 10 bis 85% der normalen Vitalität. Die Häufigkeit der Letalfaktoren läßt sich mit relativ hoher Genauigkeit messen. Detrimentale Mutationen sind nach Muller (1954) dreibis fünfmal so häufig wie die Summe der letalen und subletalen, während andere Auroren weir niedrigere Werre fanden. Da indessen diese Karegorie von Murarionen nichr exakr analysiert worden ist, kann man diese Angaben nicht als bewiesen betrachten. Die Häufigkeit der „sichtbaren“ Mutationen hängt von der Beobachtungsgabe des Forschers sowie von den benutzten Kriterien für Mutationen ab.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Allgemeine Literatur

  1. Brieger, F. G.: Populationsgenetik. In: Roemer-Rudorf, Handbudi der Pflanzenzüchtung 1, 176–224. Berlin: Parey 1958.Google Scholar
  2. Cold Spring Harbor Symposia on Quantitative Biology. Vol. 20: Population Genetics. 350 pgs., 1955.Google Scholar
  3. Dobzhansky, Th.: Genetics and the Origin of Species. 3rd ed. New York: Columbia Univ. Press 1951.Google Scholar
  4. Dobzhansky, Th.: A review of some fundamental concepts and problems of population genetics. Cold Spr. Harb. Symp. quant. Biol. 20, 1–15 (1955).CrossRefGoogle Scholar
  5. Falconer, D. S.: Introduction to Quantitative Genetics. Edinburgh: Oliver and Boyd 1960.Google Scholar
  6. Fisher, R. A.: The genetical theory of natural selection. Oxford: Clarendon Press 1930.Google Scholar
  7. Haldane, J. B. S.: The causes of evolution. New York and London: Harper 1932.Google Scholar
  8. Lerner, I. M.: Population genetics and animal improvement. Cambridge Univ. Press 1950.Google Scholar
  9. Lerner, I. M.: The Genetic Basis of Selection. New York: John Wiley; London: Chapman and Hall 1958.Google Scholar
  10. Li, C. C.: Population genetics. Univ. Chicago Press 1955.Google Scholar
  11. Sinnott, E. W., L. C. Dunn, and Th. Dobzhansky: Principles of Genetics. 5th ed. New York, Toronto, London: McGraw-Hill 1958.Google Scholar
  12. Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931).PubMedGoogle Scholar
  13. Wright, S.: The roles of mutation, inbreeding, cross-breeding and selection in evolution. Proc. 6th int. Congr. Genet. 1, 356–366 (1932).Google Scholar
  14. Wright, S.: Classification of the factors of evolution. Cold Spr. Harb. Symp. quant. Biol. 20, 16–24 D (1955).CrossRefGoogle Scholar

Weitere Literatur

  1. Arnold, C. G.: Selektive Befruchtung. Ergebn. Biol. 20, 67–96 (1958).Google Scholar
  2. Buzzati-Traverso, A.: Heterosis in population genetics. In: Gowen (ed.): Heterosis, Chapter 9. Arnes, Iowa: Iowa State College Press 1952.Google Scholar
  3. Carson, H. L.: Genetic conditions which promote or retard the formation of species. Cold Spr. Harb. Symp. quant. Biol. 24, 87–105 (1959).CrossRefGoogle Scholar
  4. Chetverikov, S. S.: Verh. V. int. Kongr. Vererbg. 2, 1449 (1927).Google Scholar
  5. Cook, R. R.: Detection of carriers of recessive genes. J. Hered. 46, 161–166 (1955).Google Scholar
  6. Cordeiro, A. R., and Th. Dobzhansky: Combining ability of certain chromosomes in Drosophila willistoni and invalidation of the wild-type concept. Amer. Natur. 88, 75–87 (1954).CrossRefGoogle Scholar
  7. Correns, C.: Versuche bei Pflanzen das Geschlechtsverhältnis zu verschieben. Hereditas 2, 1–24 (1921).CrossRefGoogle Scholar
  8. Da Cunha, A. B.: Genetic analysis of the polymorphism of color pattern in Drosophila polymorpha. Evolution 3, 239–251 (1949).CrossRefGoogle Scholar
  9. Daday, H.: Gene frequencies in wild populations of Trifolium repens. Heredity 8, 61–78 (1954).CrossRefGoogle Scholar
  10. Daday, H.: Gene frequencies in wild populations of Trifolium repens. II. Distribution by altitud. Heredity 8, 377–384 (1954).CrossRefGoogle Scholar
  11. Dobzhansky, Th., and S. Wright: Genetics of natural populations. X. Dispersion rates in Drosophila pseudoobscura. Genetics 28, 304–340 (1943).PubMedGoogle Scholar
  12. Dobzhansky, Th., and B. Spassky: Evolutionary changes in laboratory cultures of Drosophila pseudoobscura. Evolution 1, 191–216 (1947).CrossRefGoogle Scholar
  13. Dobzhansky, Th., O. Pavlovsky, B. Spassky, and N. Spassky: Genetics of natural populations XXIII. Biological roll of deleterious récessives in populations of Drosophila pseudoobscura. Genetics 40, 781–796 (1955).PubMedGoogle Scholar
  14. Dobzhansky, Th., O. Pavlovsky, B. Spassky, and N. Spassky: An extreme case of heterosis in a Central American population of Drosophila tropicalis. Proc. nat. Acad. Sci. (Wash.) 41, 289–295 (1955).CrossRefGoogle Scholar
  15. Dobzhansky, Th., C. Krimbas, and M. G. Krimbas: Genetics of natural populations XXIX. Is the genetic load in Drosophila pseudoobscura a mutational or a balanced load? Genetics 45, 741–753 (1960).PubMedGoogle Scholar
  16. Dunn, L. C.: Variations in the transmission ratios of alleles through egg and sperm in Mus musculus. Amer. Natur. 94, 365–393 (1960).Google Scholar
  17. Edwards, J. H.: Alternatives to heterosis. Heredity 13, 415 (1959).Google Scholar
  18. Ford, E. B.: The genetics of polymorphism in the Lepidoptera. Adv. Genet. 5, 43–87 (1953).PubMedCrossRefGoogle Scholar
  19. Harland, S. C.: An alternation in gene frequency in Ricinus communis due to climatic conditions. Heredity 1, 121–125 (1947).CrossRefGoogle Scholar
  20. Harland, S. C., and A. R. H. Jackson: Advantage of the white eye mutant of Drosophila melanogaster over the wild type in an artificial environment. Heredity 12, 27–36 (1958).CrossRefGoogle Scholar
  21. Heribert-Nilsson, N.: Sind die induzierten Mutanten nur selektive Erscheinungen? Hereditas 15, 320–328 (1931).CrossRefGoogle Scholar
  22. Hiraizumi, Y., and J. F. Crow: Heterozygous effects on viability, fertility, rate of development and longevity of Drosophila chromosomes that are lethal when homozygous. Genetics 45, 1071–1083 (1960).PubMedGoogle Scholar
  23. Ives, P. T.: The genetic structure of American populations of Drosophila melanogaster. Genetics 30, 167–205 (1945).PubMedGoogle Scholar
  24. Jones, D. F., and P. C. Mangelsdorf: The improvement of naturally cross-pollinated plants by selection in self-fertilized lines. I. The production of inbred strains of corn. Conn. Agr. exp. St. Bull. 266, 347–418 (1925).Google Scholar
  25. Kalmus, H.: Adaptive and selective responses of a population of Drosophila melanogaster containing e and e+ to differences in temperature, humidity and to selection for develop mental speed. J. Genet. 47, 58–63 (1945).CrossRefGoogle Scholar
  26. Levene, H.: Genetic equilibrium, when more than one ecological niche is available. Amer. Natur. 87, 331–333 (1953).CrossRefGoogle Scholar
  27. Lewis, H. W.: Studies on a melanoma-producing lethal in Drosophila. J. exp. Zool. 126, 235–276 (1954).CrossRefGoogle Scholar
  28. Martin, C. P.: A non-geneticist looks at evolution. Amer. Scient. 41, 100–106 (1953).Google Scholar
  29. McClintock, B.: Chromosome organization and genie expression. Cold. Spr. Harb. Symp. quant. Biol. 16, 13–47 (1951).CrossRefGoogle Scholar
  30. McClintock, B.: Induction of instability at selected loci in maize. Genetics 38, 579–600 (1953).PubMedGoogle Scholar
  31. McClintock, B.: Controlling elements and the gene. Cold Spr. Harb. Symp. quant. Biol. 21, 197–216 (1956).CrossRefGoogle Scholar
  32. McClintock, B.: The suppressor-mutator system of control of gene action. Carnegie Inst. Wash. Yearbook 57, 415–429 (1958).Google Scholar
  33. Mukai, T., and A. B. Burdick: Single gene heterosis associated with a second chromosome recessive lethal in Drosophila melanogaster. Genetics 44, 211–232 (1959).PubMedGoogle Scholar
  34. Mukai, T., and A. B. Burdick: Concerning equilibria of heterotic lethals in random mating populations with particular reference to 1(2)55 i in Drosophila melanogaster. Genetics 45, 1581–1593 (1960).PubMedGoogle Scholar
  35. Muller, H. J.: The development of the gene theory. In: L. C. Dunn (ed.): Genetics in the 20th century. Chapter 5. New York: Macmillan 1951.Google Scholar
  36. Muller, H. J.: The nature of genetic effects produced by radiation. In: A. Hollaender (ed.): Radiation Biology 1, 351–473 (1954).Google Scholar
  37. Muller, H. J.: On the relation between chromosome changes and gene mutations. Brookhaven Symp. Biol. 8, 126–147 (1956).PubMedGoogle Scholar
  38. Pavan, C., A. R. Cordeiro, N. Dobzhansky, Th. Dobzhansky, C. Malogolowkin, B. Spassky, and M. Wedel: Concealed genic variability in Brazilian populations of Drosophila willistoni. Genetics 36, 13–30 (1951).PubMedGoogle Scholar
  39. Prout, T.: Selection against heterozygotes for autosomal lethals in natural populations of Drosophila willistoni. Proc. nat. Acad. Sci. (Wash.) 38, 478–481 (1952).CrossRefGoogle Scholar
  40. Sager, R.: On the mutability of the waxy locus in maize. Genetics 36, 510–540 (1951).PubMedGoogle Scholar
  41. Schuler, J. F., and G. F. Sprague: Gene frequencies in a strain of red yellow dent. Maize Genetics Cooperation News Letter 27, 38–39 (1952).Google Scholar
  42. Schwemmle, J.: Gibt es eine selektive Befruchtung? III. Biol. Zbl. 71, 152–183 (1952).Google Scholar
  43. Schwemmle, J., und W. Koepchen: Weitere Untersuchungen zur selektiven Befruchtung. Z. Vererbungsl. 85, 307–346 (1953).CrossRefGoogle Scholar
  44. Singleton, W. R.: The effect of chronic gamma radiation on endosperm mutations in maize. Genetics 39, 587–603 (1954).PubMedGoogle Scholar
  45. Spencer, W. P.: Mutations in wild populations in Drosophila. Adv. Genet. 1, 359–402 (1947).PubMedCrossRefGoogle Scholar
  46. Stadler, L. J.: Some observations on gene variability and spontaneous mutation. The Spragg Memorial Lectures (Third Series) Michigan State College, 1942.Google Scholar
  47. Stadler, L. J.: Spontaneous mutation in maize. Cold Spr. Harb. Symp. quant. Biol. 16, 49–63 (1951).CrossRefGoogle Scholar
  48. Stern, C., G. Carson, M. Kinst, E. Novitski, and D. Uphoff: The viability of heterozygotes for lethals. Genetics 37, 413–449 (1952).PubMedGoogle Scholar
  49. Wallace, B.: The role of heterozygosity in Drosophila populations. Proc. 10th int. Congr. Genet. 1, 408–419 (1958).Google Scholar
  50. Woodworth, C. M.: Illinois Corn Breeding Report. Cornell Corn Imp. Report (1930). Cfr. Cold Spr. Harb. Symp. quant. Biol. 20, 88.Google Scholar
  51. Wright, S.: The distribution of gene frequencies in populations. Proc. nat. Acad. Sci. (Wash.) 23, 307–320 (1937).CrossRefGoogle Scholar
  52. Yanofsky, C.: The tryptophan synthetase system. Bact. Rev. 24, 221–245 (1960).PubMedGoogle Scholar

Copyright information

© Springer-Verlag OHG / Berlin · Göttingen · Heidelberg 1963

Authors and Affiliations

  • Gunnar Eilert Hiorth

There are no affiliations available

Personalised recommendations