Novel Proteinase Inhibitors in Snake Venoms: Distribution, Isolation, and Amino Acid Sequence

  • H. Takahashi
  • S. Iwanaga
  • T. Kitagawa
  • Y. Hokama
  • T. Suzuki
Conference paper
Part of the Bayer-Symposium book series (BAYER-SYMP, volume 5)


Hageman factor, contact factor of blood coagulation system, is found only in mammalian blood plasma and is known to act as a trigger of kallikrein-kinin system and coagulation-fibrinolytic system. Previously, we found that Hageman factor activates directly bovine plasma prekallikrein, splitting only a single arginyl bond on a peptide chain bridged by a disulfide linkage [1, 2]. During this study we established a method to prepare highly purified bovine pre-kallikrein [3]. Subsequently, the authors intended to look for an enzyme with Hageman factorlike activity of other sources using the is well known that snake venoms contain protein components which concern to kallikrein-kinin and blood coagulation systems. Thus, we first took snake venoms to find a nonmammalian pre-kallikrein activating Hageman-like enzyme. Unexpectedly, we could not find the activation of pre-kallikrein with snake venoms. Since snake venoms generally contain proteinases, we tested whether or not venom proteinases destroyed the pre-kallikrein or kallikrein molecule. For this purpose, purified bovine Hageman factor was added to an incubation mixture of pre-kallikrein and snake venom. By the addition of bovine Hageman factor to the mixture, the expected kallikrein activity was fully evolved. However, when the venom of Vipera russelli was present in the incubation mixture, kallikrein activity was not evolved even after the addition of Hageman factor. From this result, it was supposed that a kallikrein inhibitor may exist in the venom, and really the inhibitors in it were isolated. Isolated Russell’s viper inhibitors also inhibited trypsin, α-chymotrypsin and plasmin [4].


Snake Venom Plasma Kallikrein Blood Coagulation System Hageman Factor High Voltage Paper Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



N-α-Tosyl-L-arginine methylester


N-α-Acetyl-L-tyrosine ethylestcr


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nagasawa, S., Takahashi, H., Koida, M., Suzuki, T., Schoenmakers, J.G.G.: Biochem. Biophys. Res. Commun. 32, 644–649 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi, H., Nagasawa, S., Suzuki, T.: FEBS Letters 24, 98–100 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi, H., Nagasawa, S., Suzuki, T.: J. Biochem. 71, 471–483 (1972).PubMedGoogle Scholar
  4. 4.
    Takahashi, H., Iwanaga, S., Suzuki, T.: FEBS Letters 27, 207–210 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    Mebs, D., Narita, K., Iwanaga, S., Samejima, Y., Lee, C.-Y.: Z. Phys. Chem. 353, 243–262 (1972).CrossRefGoogle Scholar
  6. 6.
    Takechi, M., Hayashi, K.: Biochem. Biophys. Res. Commun. 49, 584–590 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Narita, K., Lee, C.-Y.: Biochem. Biophys. Res. Commun. 41, 339–343 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    Laskowski, M., Jr., Sealock, R.W.: In: Boyer, P.D. (Ed.): The Enzymes, Vol.Ill, pp.375–473. New York-London: Academic Press 1971.Google Scholar
  9. 9.
    Fink, E., Klein, G., Hammer, F., Müller-Bardorff, G., Fritz, H.: In: Fritz, H., Tschesche, H. (Eds.): Proceedings of the International Research Conference on Proteinase Inhibitors, pp.225–235. Berlin-New York: Walter de Gruyter 1971.Google Scholar
  10. 10.
    Rigbi, M: In: Fritz, H., Tschesche, H. (Eds.): Proceedings of the International Research Conference on Proteinase Inhibitors, pp. 74–88. Berlin-New York: Walter de Gruyter 1971.Google Scholar
  11. 11.
    Dubois, K., Gilles, K. A., Hamilton, J.K., Robers, P.A., Smith, F.: Anal. Chem. 28, 350–356 (1956).CrossRefGoogle Scholar
  12. 12.
    Edman, P.: In: Needleman, S.B. (Ed.): Protein Sequence Determination, pp.211–255. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  13. 13.
    Braun, V., Schröder, W.A.: Arch. Biochem. Biophys. 118, 241–252 (1967).CrossRefGoogle Scholar
  14. 14.
    Crestfield, A.M., Moore, S., Stein, W.H.: J. biol. Chem. 238, 622–627 (1963).Google Scholar
  15. 15.
    Iwanaga, S., Wallen, P., Gröndahl, N.J., Henschen, A., Blombäck, B.: Europ. J. Biochem. 8, 189–199 (1969).PubMedCrossRefGoogle Scholar
  16. 16.
    Spackman, D.H., Stein, W.H., Moore, S.: Anal. Chem. 30, 1190–1206 (1968).CrossRefGoogle Scholar
  17. 17.
    Edman, P., Sjöquist, J.: Acta chem. scand. 10, 1507–1509 (1956).CrossRefGoogle Scholar
  18. 18.
    Brenner, M., Niederwieser, A., Pataki, G.: In: Stahl, E. (Ed.): Dünnschichtchromatographie, S. 443. Berlin-Heidelberg-New York: Springer 1962.Google Scholar
  19. 19.
    Huber, R., Kukla, D., Rühlmann, A., Epp, O., Formanek, H.: Naturwissenschaften 57, 389–392 (1970).PubMedCrossRefGoogle Scholar
  20. 20.
    Takahashi, H., Iwanaga, S., Hokama, Y., Suzuki, T., Kitagawa, T.: FEBS Letters 38, 217–221 (1974).CrossRefGoogle Scholar
  21. 21.
    Strydom, D.J.: Nature (Lond.) New Biol. 243, 88 (1973).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. Takahashi
    • 1
  • S. Iwanaga
    • 1
  • T. Kitagawa
    • 1
  • Y. Hokama
    • 1
  • T. Suzuki
    • 1
  1. 1.Division of Plasma Proteins, Institute for Protein ResearchOsaka UniversitySuitaJapan

Personalised recommendations