Toxic Disturbances of Renal Functions

  • F. Gloor
  • D. E. Oken
  • M. Wiederholt
  • K. Hierholzer
  • K. H. Langer
  • W. Thoenes
  • A. Warning
  • H. C. Burck
  • F. Petruch
  • F. P. Brunner
  • P. G. Frick
  • K. G. Thiele
  • R. C. Muehrcke
  • K. Gellissen
  • H. Schumacher
  • U. C. Dubach
  • J. Brodehl
  • W. Hagge
  • G. M. Eisenbach
  • H. Cain
  • M. Steinhausen
Conference paper


The prevalence and importance of the toxic nephropathies has increased considerably in the course of the last few years. This increase has created therapeutic problems in practical medicine, since the number of drugs and chemicals used in industry and agriculture, which influence human bodily functions, increases steadily. On the other hand, experimental toxic nephropathies may be good models for studying functional and structural changes of diseased glomeruli and tubules.


Acute Renal Failure Proximal Tubule Renal Lesion Metabolic Alkalosis Sodium Reabsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baines, A. D.: Cell renewal following dichromate induced renal tubular necrosis. An enzyme histochemical study. Amer. J. Path. 47, 851–876 (1965).PubMedGoogle Scholar
  2. 2.
    Beaver, D. L., and R. E. Burr: Electron microscopy of bismuth inclusions. Amer. J. Path. 42, 609–618 (1963).PubMedGoogle Scholar
  3. 3.
    Bluemle, L. W., C. D. Webster, and R. J. Elkinton: Acute tubular necrosis. Arch. intern. Med. 104, 180–186 (1959).Google Scholar
  4. 4.
    Boule, A.: Pathologische Anatomie des akuten Nierenversagens. Verh. dtsch. Ges. Path. 49, 56–66 (1965).Google Scholar
  5. 5.
    Boler, R. K., J. S. Broom, and R. B. Arhelger: Ultrastructural renal alterations following tannic acid administration to rabbits. Amer. J. Path. 49, 15–32 (1966).PubMedGoogle Scholar
  6. 6.
    Burck, H. C.: Die Zellschwellung als Folge des passiven Wasserwechsels. Ionenbilanzstudien an inkubierten Leberschnitten. Virchows Arch. path. Anat. 336, 326–341 (1963).Google Scholar
  7. 7.
    Caesar, R.: Die Bedeutung der Lysosomen für die formale Genese der Viomycin-Nephrose. Verh. dtsch. Ges. Path. 49, 157–161 (1965).Google Scholar
  8. 8.
    David, H.: Elektronenmikroskopische Befunde bei der dioxanbedingten Nephrose der Rattenniere. Beitr. path. Anat. 130, 187–212 (1964).Google Scholar
  9. 9.
    Dubach, U. C.: Aminonucleosid-Nephrose. Fortschr. Arzneimittel-Forsch. 7, 341–463 (1964).Google Scholar
  10. 10.
    Ellis, J. T.: Glomerular lesions and the nephrotic syndrome in rabbits given sacchareted iron dioxide intravenously, with special reference to the part played by intracapillary precipitates in the pathogenesis of the lesions. J. exp. Med. 103, 207–210 (1956).Google Scholar
  11. 11.
    Ericsson, J. L. E., and G. A. Andres: Electron microscopic studies on the development of the glomerular lesions in aminonucleoside nephrosis. Amer. J. Path. 39, 643–663 (1961).PubMedGoogle Scholar
  12. 12.
    Ericsson, J. L. E., and G. A. Andres, B. F. TRUMP, and J. WEIBEL: Electron microscopic studies of the proximal tubule of the rat kidney. Lab. Invest. 14, 1341–1365 (1965).Google Scholar
  13. 13.
    Fink, H. E., W. J. Roenigk, and G. P. Wilson: An experimental investigation of the nephrotoxic effects of oral cholecystographic agents. Amer. J. med. Sci. 247, 201–215 (1964).PubMedGoogle Scholar
  14. 14.
    Foreman, H., C. Finnegan, and C. C. Lushbangh: Nephrotoxic hazard from uncontrolled edethamil calcium-disodium therapy. J. Amer. med. Ass. 160, 1042–1046 (1956).Google Scholar
  15. 15.
    Foster, C. L., and E. Cameron: Observations on the histological effects of subletal doses of cadmium chloride in the rabbit. II. The effect on the kidney cortex. J. Anat. (Lond.) 97, 281–288 (1963).Google Scholar
  16. 16.
    Ganote, C. E., D. L. Beaver, and H. L. Moses: Renal gold inclusions. Arch. Path. 81, 431–438 (1966).Google Scholar
  17. 17.
    Gayer, J., u. R. Partowi: Ein Beitrag zur Pathogenese der Sublimatnephrose. Z. ges. exp. Med. 135, 419–430 (1962).Google Scholar
  18. 18.
    Geiser, W.: Experimentell erzeugte chronisch-interstitielle Nephritis. Virchows Arch. path. Anat. 330, 463–482 (1957).Google Scholar
  19. 19.
    Gerard, P., et R. Cordier: Sur l’interprétation des altérations morphologiques caractéristiques observées dans le rein au cours de la néphrose lipidique. Arch. int. Méd. exp. 8, 225–235 (1933).Google Scholar
  20. 20.
    Gloor, F., et M. Jenny: Nécrose papillaire et néphrite interstitielle chronique (Etude expérimentale). Helv. med. Acta 27, 218–227 (1960).Google Scholar
  21. 21.
    Harber, M. H., and R. B. Jennings: Renal response of the rat to mercury. Arch. Path. 79, 218–222 (1965).PubMedGoogle Scholar
  22. 22.
    Hodel, C., F. Gloor U. W. Meier-Ruge: Elektronenmikroskopische und histochemische Befunde bei primären Alterationen am distalen Nierentubulus. Verh. dtsch. Ges. Path. 49, 162–167 (1965).Google Scholar
  23. 23.
    Hruban, Z., B. Spargo, H. Swift, R. W. Wissler, and R. G. Kleinfeld: Focal cytoplasmic degradation. Amer. J. Path. 42, 657–684 (1963).PubMedGoogle Scholar
  24. 24.
    Huth, F., u. E. Mcclure: Morphologische Veränderungen der Nieren von Kaninchen nach Injektion von Schlangengift (Bothrops jararaca). Frankfurt. Z. Path. 74, 91–108 (1964).Google Scholar
  25. 25.
    Jacobsen, L., E. K. Anderson, and J. V. Thorberg: Accidental chloroform nephrosis in mice. Acta path. microbiol. scand. 61, 503–513 (1964).PubMedGoogle Scholar
  26. 26.
    Kemmer, C., K. D. Kunze U. W. R. Herrmann: Das elektronenmikroskopische Bild der Rattenniere nach oraler Applikation von 2,4-Dinitrophenol (DNP). Frankfurt. Z. Path, 77, 83–97 (1967).PubMedGoogle Scholar
  27. 27.
    Kiley, J. E., S. R. Powers, and R. T. Beebe: Acute renal failure. New Engl. J. Med. 262, 481–486 (1960).Google Scholar
  28. 28.
    Klavins, J. V., P. L. Patrick, and D. J. Kroe: Experimental renal papillary necrosis. Fed. Proc. 22, 549–550 (1963).Google Scholar
  29. 29.
    Kleeman, C. R., and M. H. Maxwell: The nephrotoxicity of antibiotics. In: Biology of pyelonephritis. Boston: Little, Brown & Co. 1960.Google Scholar
  30. 30.
    Klein, H. J., E. STEINBACH u. N. Schümmelfeder: Ultrastrukturelle und histochemische Untersuchungen zur Entstehung der Viomycin-Nephrose. Frankfurt. Z. Path. 75, 432–445 (1966).PubMedGoogle Scholar
  31. 31.
    Kriz, W.: Histophysiologische Untersuchung an der Rattenniere bei Sublimatvergiftung. Z. Zellforsch. 57, 914–952 (1962).PubMedGoogle Scholar
  32. 32.
    Kunze, K. D., u. W. R. Herrmann Histologische und fermenthistochemische Befunde an der Rattenniere nach oraler Belastung mit 2,4-Dinitrophenol. Frankfurt. Z. Path. 76, 213–226 (1967).Google Scholar
  33. 33.
    Lapp, H., u. K. Schafe: Morphologische, histochemische und Speicherungs-Untersuchungen über den Verlauf der Sublimatnephrose bei der Ratte. Beitr. path. Anat. 123, 77–100 (1960).Google Scholar
  34. 34.
    Lowe, B. M., D. Obst, and E. Tapp: Renal damage caused by anhydro-4-epi-tetracycline. Arch. Path. 81, 362–364 (1965).Google Scholar
  35. 35.
    Lutterbeck, P., F. Gloor, W. Meier-Rüge, and E. C. Yasargil: Localization of renal dysfunction following polybrene medication. J. cardiovasc. Surg. (Torino) 8, 515–519 (1967).Google Scholar
  36. 36.
    Macfarlane, D.: Zit. nach K. O. ROTHER, Experimentelle Nierenkrankheiten. In: Handbuch der experimentellen Pharmakologie, Bd. XVI/4. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  37. 37.
    Martines, G.: Ultrastructural findings of rat kidney treated with carbon tetrachlorideRiv. Pat. Clin. 6, 171 (1965).Google Scholar
  38. 38.
    Meier, W., u. H. SIMON: Über eine Möglichkeit zur halbquantitativen Auswertung histochemischer Fermentnachweise und anderer histochemischer Reaktionen. Acta histochem. (Jena) 8, 1–8 (1959).Google Scholar
  39. 39.
    Meier, W.: Untersuchungen über primäre Alterationen am distalen Nierentubulus der Ratte mit Störung des Haarnadelgegenstromsystems. Virchows Arch. path. Anat. 337, 470–482 (1964).Google Scholar
  40. 40.
    Der Aussagewert des experimentellen pathologischen Nierenbefundes für die Pathologic der menschlichen Niere. Path. Microbiol. 30, 266–282 (1967).Google Scholar
  41. 41.
    Mölbert, E., D. Kuhn u. F. Büchner: Elektronenmikroskopische Untersuchungen am Tubulusepithel der Niere sublimatvergifteter Ratten. Beitr. path. Anat. 129, 222–246 (1963/64).Google Scholar
  42. 42.
    Noltenius, H., H. Schellhas u. W. Oehlert: Histoautoradiographische Untersuchungen mit 3 H-Thymidin der Tubulusregeneration nach akuter Sublimatvergiftung von Ratten. Beitr. path. Anat. 129, 90–117 (1963/64).Google Scholar
  43. 43.
    Oliver, J., M. Macdowell, and A. Tracy: The pathogenesis of acute renal failure associated with traumatic and toxic injury. J. clin. Invest. 30, 1305–1440 (1951).Google Scholar
  44. 44.
    Porte, A., Y. Cussac, P. STOEBNER et J. P. ZAHND: Sur la formation et l’ultrastructure des “cellules de régéneration” dans les tubes rénaux de souris intoxiquées par le nitrate d’uranyle. C. R. Soc. Biol. (Paris) 157, 2079–2081 (1963).Google Scholar
  45. 45.
    Reber, K.: Blockierung der Speicherfunktion der Niere als Schutz bei Sublimatvergiftung. Schweiz. Z. Path. 16, 755–771 (1953).Google Scholar
  46. 46.
    REUBER, M. D.: Accentuation of Ca edetate nephrosis by cortisone. Arch. Path. 76, 382386 (1963).Google Scholar
  47. 47.
    Rodin, A. E., and C. N. CROWS 3N: Mercury nephrotoxicity in the rat. II. Investigation of the intracellular site of mercury nephrotoxicity by correlated serial tissue histologic and histoenzymatic studies. Amer. J. Path. 41, 485–495 (1962).Google Scholar
  48. 48.
    Rotter, W., H. Lapp U. H. Zimmermann: Pathogenese und morphologisches Substrat des „akuten Nierenversagens“ und seine Erholungszeit. Dtsch. med. Wschr. 87, 669677 (1962).Google Scholar
  49. 49.
    Sakaguchi, H., and S. Kawamura: Electron microscopic observations of the mesangiolysis. The toxic effects of the “Habu snake” venom on the renal glomerulus. Keiô J. Med. 12, 99–106 (1963).Google Scholar
  50. 50.
    Schlegel, J. U., and J. B. Moses: A method for visualization of kidney blood vessels applied to studies of the crush syndrome. Proc. Soc. exp. Biol. (N.Y.) 74, 832–837 (1950).Google Scholar
  51. 51.
    Schreiner, G. E.: Nephrotoxicity and diagnostic agents. J. Amer. med. Ass. 196, 413415 (1966).Google Scholar
  52. 52.
    Schreiner, G. E., and J. F. Maher: Toxic nephropathy. Amer. J. Med. 38, 409–432 (1965).PubMedGoogle Scholar
  53. 53.
    Simonds, J. P., and O. E. Hepler: Experimental nephropathies I. A method of producing controlled selective injury of renal units by means of chemical agents. Arch. Path. 39, 103–108 (1945).Google Scholar
  54. 54.
    Smith, J. F., and Yin Chen Lee: Experimental uric acid nephritis in the rabbit. J. exp. Med. 105, 615–621 (1957).PubMedGoogle Scholar
  55. 55.
    Staemmler, M.: Die akuten Nephrosen. IV. Tubuläre Schädigung und Wiederherstellung. Virchows Arch. path. Anat. 330, 139–155 (1957).Google Scholar
  56. 56.
    Staemmler, M. u. B. Karkhoff: Die akuten Nephrosen. H. Nierenschäden durch Antibiotika. Virchows Arch. path. Anat. 328, 481–502 (1956).Google Scholar
  57. 57.
    Stone, S. R., S. A. Bencosme, H. LATTA, and S. C. MADDEN: Renal tubular fine structure. Studied during reaction to acute uranium injury. Arch. Path. 71, 160–174 (1961).Google Scholar
  58. 58.
    Sun, C. N., R. A. Goyer, M. Mellies, and M. W. YIN: The renal tubule in experimental lead intoxication. Arch. Path. 82, 156–163 (1966).PubMedGoogle Scholar
  59. 59.
    Suzuki, T.: Zur Morphologie der Nierensekretion unter pathologischen Bedingungen. Jena: Fischer 1912.Google Scholar
  60. 60.
    Taylor, N. S.: Histochemical studies of nephrotoxicity with sublethal doses of mercury in rats. Amer. J. Path. 46, 1–22 (1965).PubMedGoogle Scholar
  61. 61.
    Thoenes, W.: Mikromorphologie des Nephron nach temporärer Ischämie. Zwangslose Abhandlung aus dem Gebiet der normalen und pathologischen Anatomie, H. 15. Stuttgart: Georg Thieme 1964.Google Scholar
  62. 62.
    Totovíc, V.: Elektronenmikroskopische Untersuchungen an dem Tubulusapparat der Niere bei experimenteller chronischer Bleivergiftung der Ratte. Virchows Arch. path. Anat. 339, 151–167 (1965).Google Scholar
  63. 63.
    Totovíc, V.: Elektronenmikroskopische Untersuchungen über das Verhalten der Hauptstückepithelien beim experimentellen Niereninfarkt der Ratte. Virchows Arch. path. Anat. 340, 251–269 (1966).Google Scholar
  64. 64.
    Wachstein, M.: Nephrotoxic action of DL-serine in the rat. I. Localization of the renal damage, the phosphatase activity and the influence of age, sex, time and dose. Arch. Path. 43, 503–514 (1947).PubMedGoogle Scholar
  65. 65.
    Wachstein, M., and M. Besen: Electron microscopy of renal coagulative necrosis due to DL-serine, with special reference to mitochondrial pyknosis. Amer. J. Path. 44, 383–400 (1964).PubMedGoogle Scholar
  66. 66.
    Worthen, H. G.: Renal toxicity of maleic acid in the rat. Enzymatic and morphologic observations. Lab. Invest. 12, 791–801 (1963).PubMedGoogle Scholar
  67. 67.
    Zollinger, H. U.: Niere und ableitende Harnwege. W. DOERR u. E. UEHLINGER, Spezielle pathologische Anatomie, Bd. 3, S. 198. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  68. 68.
    Zenker, H. O. H., and D. G. Mckay: Ultrastructural alterations in deuterium intoxication. Arch. Path. 82, 18–26 (1966).Google Scholar
  69. 1.
    Flanigan, W. J., and D. E. Oren: Renal micropuncture study of the development of anuria in the rat with mercury-induced acute renal failure. J. clin. Invest. 44, 449–451 (1965).PubMedGoogle Scholar
  70. 2.
    Oken, D. E., M. L. Arce, and D. R. Wilson: Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J. clin. Invest. 45, 724–735 (1966).Google Scholar
  71. 3.
    Thiel, G., D. R. Wilson, M. L. Arce, and D. E. Oken: Glycerol induced hemoglobinuric acute renal failure in the rat. II. The experimental model, predisposing factors, and pathophysiologic features. Nephron 4, 276–297 (1967).PubMedGoogle Scholar
  72. 4.
    Wulson, D. R., G. Thiel, M. L. Arce, and D. E. Oken: Glycerol induced hemoglobinuric acute renal failure in the rat. III. Micropuncture study of the effects of Mannitol and isotonic saline on individual nephron function. Nephron 4, 337–355 (1962).Google Scholar
  73. 5.
    Wilson, D. R., G. Thiel, M. L. Arce, and D. E. Oken: The role of the concentration mechanism in the development of acute renal failure: Micropuncture studies using diabetes insipidus rats. Nephron (in press).Google Scholar
  74. 6.
    Steinhausen, M.: Pflügers Arch. ges. Physiol. 279, 195–213 (1964).Google Scholar
  75. 7.
    Steinhausen, M.: In: Aktuelle Probleme der Nephrologie. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  76. 8.
    Bank, N., B. F. Mutz, and H. S. Aynedjian: The role of leakage of tubular fluid in anuria due to mercury poisoning J clin. Invest. 46, 695–704 (1967).PubMedGoogle Scholar
  77. 9.
    Jaenike, J. R.: The renal lesion associated with hemoglobinemia: A study of the pathogenesis of the excretory defect in the rat. J. clin. Invest. 46, 378–387 (1967).PubMedGoogle Scholar
  78. 1.
    Bayliss, L. E., and E. Lundsgaard: The action of cyanide on the isolated mammalian kidney. J. Physiol. (Lund.) 74, 279–293 (1932).Google Scholar
  79. 2.
    Becker, V.: Geweblich g ebundener Sauerstoffmangel (histotoxisch bedingte Hypoxydosen). Klin. Wschr. 32, 577Google Scholar
  80. 3.
    Bohle, A., Cx. Herfarth u. H.-J. Krecke: Beitrag zur Morphologie der Niere beim akuten Nierenversagen. Klin. Wschr. 38, 152–164 (1960).PubMedGoogle Scholar
  81. 4.
    Hanssen, O. E.: Early post mortem renal changes studied in mice with one kidney exteriorized. Acta path. microbiol. scand. 49, 280–296 (1960).PubMedGoogle Scholar
  82. 5.
    Leyssac, P. P.: Dependence of glomerular filtration rate on proximal tubular reabsorption of salt. Acta physiol. scand. 58, 236–242 (1963).PubMedGoogle Scholar
  83. 6.
    Movat, H. Z.: Silver impregnation methods for electron microscopy. Amer. clin. Path. 35, 528–537 (1961).Google Scholar
  84. 7.
    Opitz, E.: Der Zellstoffwechsel in seiner Beziehung zur Zellstruktur. Verh. dtsch. Ges. Path. 33, 18–20 (1949).Google Scholar
  85. 8.
    Randerath, E., u. A. BOHLE: Morphologische Grundlagen akuter extrarenal bedingter Nierenfunktionsstörungen. Verh. dtsch. Ges. inn. Med. 65, 250–269 (1959).Google Scholar
  86. 9.
    Steinrausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeit. Pflügers Arch. ges. Physiol. 277, 23–35 (1963).Google Scholar
  87. 10.
    Steinrausen, M., J. Jravani, G. E. Schubert u. R. Taucher: Auflichtmikroskopie und Histologie der Tubulusdimensionen bei verschiedenen Diuresezuständen. Virchows Arch. path. Anat. 336, 503–527 (1963).Google Scholar
  88. 11.
    Swann, H. G.: The functional distension of the kidney: a review. Tex. Rep. Biol. Med. 18, 565–595 (1960).Google Scholar
  89. 12.
    Thoenes, W.: Mikromorphologie des Nephron nach temporärer Ischämie. Zwangl. Abh Geb. norm. u. path. Anat., H. 15. Stuttgart: G. Thieme 1964.Google Scholar
  90. 13.
    Thoenes, W. K. H. Langer u. M. Wiederholt: Resorption von Ferritin im proximalen Konvolut der Rattenniere. Klin Wschr. 44, 1379–1381 (1966).PubMedGoogle Scholar
  91. 14.
    Thoenes, W., u. A. Warning: Funktionsmorphologische Studien zur energetischen Insuffizienz des Nierentubulus. Klin Wschr. 46, 696–708 (1968).PubMedGoogle Scholar
  92. 15.
    Walther, D.: Ein Beitrag zur Insuffizienz der proximalen Nierentubuli und zur Deutung der „Nephrohydrose“. Winch. med. Wschr. 105, 1370–1375 (1963).Google Scholar
  93. Batolo, D., P. Calapso e C. Inferrera: Richerche istochimiche ed ultrastrutturali sul rene da emoglobinuria sperimentale. Arch. De Vecchi Anat. pat. 43, 419–434 (1964).Google Scholar
  94. Burck, H.-C.: Die Zellschwellung als Folge des passiven Wasserwechsels. Virchows Arch. path. Anat. 336, 326–349 (1963).Google Scholar
  95. Burck, H.-C.: Zur Morphologie der Niere beim akuten Nierenversagen und beim akuten Tod. Klin Wschr. 45, 1208–1216 (1967).PubMedGoogle Scholar
  96. Burck, H.-C.: u. F. Petruch: Struktur und Funktion der geschädigten Außenzone nach Ischämie alsGoogle Scholar
  97. Burck, H.-C.: Beitrag zum akuten Nierenversagen. Arch. klin. Med. 212, 313–326 (1966).Google Scholar
  98. Burck, H.-C.:Tierexperimenteller Beitrag zur allgemeinen Pathologie des akuten Nierenversagens. Arch. klin Med. 214, 1–19 (1967 a).Google Scholar
  99. Burck, H.-C.:Natriumabhängige Atmungsänderungen der Nierenrinde, -außenzone und der Leber in vitro. Klin Wschr. 45, 1216–1219 (1967b).Google Scholar
  100. Cameron, G. R., and E. S. Fincxx: The production of an acute haemolytic crisis by the subcutaneous injection of glycerol. J. Path. Bact. 71, 165–172 (1956).PubMedGoogle Scholar
  101. Carroll, R., K. Kovacs, and E. Tapp: The pathogenesis of glycerol-induced renal tubular necrosis. J. Path. Bact. 89, 573–580 (1965).PubMedGoogle Scholar
  102. Fajers, C. M.: Experimental studies in hemoglobinuric nephrosis. II. The enhanced effect on the kidneys of glycerol-induced hemoglobinemia combined with unilateral nephrectomy. Acta path. microbiol. scand. 46, 17–36 (1959).PubMedGoogle Scholar
  103. Fajers, C. M.: Experimental studies in hemoglobinuric nephrosis. III. The effect of acute hemolytic anemia (hemoglobinemia) combined with ten minutes’ unilateral renal ischemia on the morphology and function of the rabbit’s kidneys. Acta path. microbiol. scand. 44, 177–196 (1959b).Google Scholar
  104. Finckh, E. S.: Experimental acute tubular nephrosis following subcutaneous injection of glycerol. J. Path. Bact. 73, 69–85 (1957).Google Scholar
  105. Finckh, E. S.: The indirect action of subcutaneous injections of glycerol on the renal tubules in the rat. J. Path. Bact. 78, 197–202 (1959).PubMedGoogle Scholar
  106. Finckh, E. S.: Glycerol-induced oliguria and reduced glomerular filtration in the rat. Brit. J. exp. Path. 16, 119–124 (1965).Google Scholar
  107. Jaenike, J. R.: The renal lesion associated with hemoglobinemia. I. Its production and functional evolution in the rat. J. exp. Med. 123, 523–535 (1966).Google Scholar
  108. Krebs, H. A.: Body size and tissue respiration. Biochim. biophys. Acta (Amst.) 4, 249–269 (1950).Google Scholar
  109. Koslowski, L.: Experimentelle Untersuchungen zur Pathogenese und Morphologie des Crush-Syndroms. Zbl. allg. Path. path. Anat. 87, 49–74 (1951).Google Scholar
  110. Koslowski, L.: Die Pathogenese der akuten Niereninsuffizienz aus der Sicht des Chirurgen. In: Akutes Nierenversagen, S. 71–75. Stuttgart: Thieme 1962.Google Scholar
  111. Steinhausen, M.: Lissamingrün-Passagen in der Nierenpapille — Mesocricetus auratus (Muridae) Goldhamster. Film Nr. E 967. Institut für den wissenschaftlichen Film, Göttingen.Google Scholar
  112. Ullrich, K. J., u. G. Pealing: Aktiver Natriumtransport und Sauerstoffverbrauch der äußeren Markzone der Niere. Pflügers Arch. ges. Physiol. 267, 207–217 (1958).Google Scholar
  113. Zollinger, H. U.: Niere und ableitende Harnwege. In: Spezielle pathologische Anatomie, Bd. III. Hrsg. W. Doerr u. E. Ueilinger. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  114. We are indebted to Miss Ulrike Kretschmann for technical assistance.Google Scholar
  115. 1.
    Clapp, J. R., F. C. Rector JR., and D. W. SELDIN: Effect of unreabsorbed anions on proximal and distal transtubular potentials in the rat. Amer. J. Physiol. 202, 781–786 (1962).PubMedGoogle Scholar
  116. 2.
    Gitlyassy, P. F., C. van Ypersele DE Strihou, and W. B. schwartz: The mechanism of nitrate-induced alkalosis. The Possible role of selective chloride depletion in acid-base regulation. J. clin. Invest. 41, 1850–1862 (1962).Google Scholar
  117. 3.
    Malnic, G., R. M. Klose, and G. GIEBISCH: Micropuncture study of distal tubular potassium and sodium transport in the rat nephron. Amer. J. Physiol. 211, 529–547 (1966).PubMedGoogle Scholar
  118. 4.
    Müller, A. F., E. L. Manning, and J. Hodler: Hypoaliaemie, Aldosteronausscheidung und primärer Hyperaldosteronismus. Schweiz. med. Wschr. 93, 1265–1272 (1963).Google Scholar
  119. 5.
    Rector, F. C., JR., H. A. Bloomer, and D. W. Seldin: Effect of potassium deficiency on the reabsorption of bicarbonate in the proximal tubule of the rat kidney. J. clin. Invest. 43, 1976–1985 (1964).Google Scholar
  120. 6.
    Seldin, D. W., F. C. Rector, N. Carter, and J. Copenhaver: Nature of hypochloremic alkalosis induced by adrenal steroids. Amer. J. Med. 16, 608 (1954) (Abstract).Google Scholar
  121. 7.
    Weinstein, L., P. I. Lerner : Clinical and bacteriological studies on the effect of “massive” doses of penicillin G on infections caused by gram-negative bacilli. New Engl. J. Med. 271, 525–533 (1964).Google Scholar
  122. 1.
    Adams, D. A., R. Goldman, M. H. Maxwell, and H. LATTA: Nephrotic syndrome associated with penicillamine therapy of Wilson’s disease. Amer. J. Med. 36, 330–336 (1964).PubMedGoogle Scholar
  123. 2.
    Agnew, L. R. C.: Renal lesions in pyridoxine-deficient rats. J. Path. Bact. 63, 699–705 (1951).PubMedGoogle Scholar
  124. 3.
    Boudin, G., et B. PÉPIN: Accidente rénaux dans deux cas maladie de Wilson traités par la pénicillamine. Bull. Soc. méd. Hôp. Paris 116, 833–842 (1965).PubMedGoogle Scholar
  125. 4.
    Fellers, F. X., and N. T. Shahide: Nephrotic syndrome induced by penicillamine therapy. Amer. J. Dis. Child. 98, 699 (1959).Google Scholar
  126. 5.
    Goldberg, A., J. A. Smith, and A. C. Lockhead • Treatment of lead-poisoning with oral penicillamine. Brit. med. J. 1963 I, 1270–1274.Google Scholar
  127. 6.
    Hirschman, S. Z., and K. J. Isselbadher: The nephrotic syndrome as a complication of penicillamine therapy for hepatolenticular degeneration (Wilson’s disease). Ann. intern. Med. 62, 1297–1300 (1965).PubMedGoogle Scholar
  128. 7.
    Jaffe, I. A., K. Altman, and P. Merryman: The antipyridoxine effect of penicillamine in man. J. clin. Invest. 43, 1869–1873 (1964).PubMedGoogle Scholar
  129. 8.
    Kark, R. M.: Some aspects of nutrition and the kidney. Amer. J. Med. 25, 698–707 (1958).PubMedGoogle Scholar
  130. 9.
    Karp, M., and M. Lurie: Nephrotic syndrome in the course of treatment of Wilson’s disease with DL-penicillamine. Arch. Dis. Childh. 41, 684–687 (1966).PubMedGoogle Scholar
  131. 10.
    Méhes, J., L. Desci, F. Varga u. S. Kovkcs: Selektive chemische Ausschaltung der Harnkanälchen I. Ordnung bei Kaninchen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmakol. 234, 548–565 (1958).Google Scholar
  132. 11.
    Möse, J. R.: Weitere Untersuchungen über die Wirkung der Aristolochia-Säure. Arzneimittel-Forsch. 16, 118–122 (1966).Google Scholar
  133. 12.
    öse, J. R.: u. G. Lukas: Versuche über die Wirkungsweise von Aristolochia clematis L. Arznei–mittel-Forsch. 11, 33–36 (1961).Google Scholar
  134. 13.
    Peters, G., and P. R. Hedwall: Aristolochic acid intoxication: a new type of impairment of urinary concentrating ability. Arch. int. Pharmacodyn. 145, 334–355 (1963).Google Scholar
  135. 14.
    Porn, J.: Über das Aristolochin, einen giftigen Bestandtheil der Aristolochia-Arten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 29, 282–302 (1892).Google Scholar
  136. 15.
    Reynolds, E. S., R. L. Tannen, and H. R. Tyler: The renal lesion in Wilson’s disease. Amer. J. Med. 40, 518–527 (1966).Google Scholar
  137. 16.
    Sternlieb, I.: Penicillamine and the nephrotic syndrome. J. Amer. med. Ass. 198, 173–174 (1966).Google Scholar
  138. 17.
    Walshe, J. M.: Wilson’s disease: New oral therapy. Lancet 1956 I, 25–26.Google Scholar
  139. 18.
    Yonis, I. Z., and M. Karp: Chelating agents in Wilson’s disease. Lancet 1963 II, 689.Google Scholar
  140. 1.
    Benitz, K. F., and H. F. Diermeir: Renal toxicity of tetracycline degradation products. Proc. Soc. exp. Biol. (N.Y.) 115, 930–935 (1964).Google Scholar
  141. 2.
    Carey, B. W.: Abnormal urinary findings and achromycin V. Pediatrics 31, 697–698 (1963).Google Scholar
  142. 3.
    Castell, D. O., and H. A. Sparks: Nephrogenic diabetes insipidus due to demethylchlortetracycline hydrochloride. J. Amer. med. Ass. 193, 237–239 (1965).Google Scholar
  143. 4.
    Cleveland, W. W., W. C. Adams, J. B. Mann, and W. L. Nyhan: Acquired Fanconi syndrome following degraded tetracycline. J. Pediat. 66, 333–342 (1965).PubMedGoogle Scholar
  144. 5.
    Ehrlich, L. I., and H. S. Stein: Abnormal urinary findings following administration of achromycin V. Pediatrics 31, 339 (1963).Google Scholar
  145. 6.
    Fellers, F. X., and R. Lindquist: Mechanism of induced nephropathy by old tetracycline. Fed. Proc. 23, 573 (1964).Google Scholar
  146. 7.
    Frimpter, G. W., A. E. Timpanelli, W. J. Eisenmenger, H. J. Stein, and L I Ehrlich: Reversible Fanconi syndrome caused by degraded tetracycline. J. Amer. med. Ass. 184, 111–113 (1963).Google Scholar
  147. 8.
    Fulop, M., and A. Drapkin: Potassium-depletion syndrome secondary to nephropathy apparently caused by outdated tetracycline. New Engl. J. Med. 272, 986–989 (1965).Google Scholar
  148. 9.
    Gross, J. M.: Fanconi syndrome (adult type) developing secondary to ingestion of outdated tetracycline. Ann intern. Med. 58, 523–528 (1963).PubMedGoogle Scholar
  149. 10.
    Hagge, W., u. J. Brodehl: Die Veränderungen der Nierenfunktion bei der Cystinose. Teil II. Die Aminosäuren-Clearances. Ann. paediat. (Basel) 205, 442–460 (1965).Google Scholar
  150. 11.
    Lowe, M. B., and E. Tapp: Renal damage caused by anhydro-4-epi-tetracycline. Arch. Path. 81, 362–364 (1966).PubMedGoogle Scholar
  151. 12.
    Mavromatis, F.: Tatracycline nephropathy. J. Amer. med. Ass. 193, 191–194 (1965).Google Scholar
  152. 13.
    Meyler, L.: Side effects of drugs, 4th edit. Amsterdam-New York-London-Milan-Tokyo: Excerpta Medica Foundation 1964.Google Scholar
  153. 14.
    Olson, C. A., and H. D. Riley: Complications of tetracycline therapy. J. Pediat. 68, 783–791 (1966).PubMedGoogle Scholar
  154. 15.
    Rosenthal, S., and P. Rothman: Abnormal urinary findings and achromycin V. Pediatrics 31, 697 (1963).Google Scholar
  155. 16.
    Sulxowsxl, S. R., and J. R. Haserick: Simulated systemic lupus erythematosus from degraded tetracycline. J. Amer. med. Ass. 189, 152–154 (1964).Google Scholar
  156. 17.
    Thiele, K. G., R. C. Muehrke u. H. Berning: Nierenerkrankungen durch Medikamente. Dtsch. med. Wschr. 92, 1632–1635 (1967).Google Scholar
  157. 18.
    Wegienka, L. C., and J. M. WELLER• Renal tubular acidosis caused by degraded tetracycline. Arch. intern. Med. 114, 232–235 (1964).PubMedGoogle Scholar
  158. 19.
    Zimmerman, M. J., and Z. L. Werther: Renal glycosuria, acidosis and dehydration following administration of outdated tetracycline. J. Mt Sinai Hosp. 31, 38–42 (1964).Google Scholar
  159. 1.
    Fanconi, G., u. H. Bickel: Die chronische Aminoacidurie (Aminosäurendiabetes oder nephrotisch-glukosurischer Zwergwuchs) bei der Glykogenose und der Cystinkrankheit. Heiv. paediat. Acta 4, 359–396 (1949).Google Scholar
  160. 2.
    Fellers, F. X., V. Piedrahita, and E. M. Galan: eudo-phlorizin diabetes. Ped. Res. 1, 304 (1967).Google Scholar
  161. 3.
    Kirmse, H., u. H. Friedrich: Beitrag zur Glykogenose mit Aminoacidurie bei Geschwistern. Kinderärztl. Prax. 32, 241–250 (1964).Google Scholar
  162. 4.
    Lampert, F., u. H. Mayer: Glykogenose der Leber mit Galaktoseverwertungsstörung und schwerem Fanconi-Syndrom. Z. Kinderheilk. 98, 133–145 (1967).PubMedGoogle Scholar
  163. 5.
    Odievre, M.: Glycogénose hépato-rénale avec tubulopathie complex. Rev. int. Hépat. 16, 1–70 (1966).PubMedGoogle Scholar
  164. 6.
    Rotthauwe, H. W., H. Fichsel, H. W. Heldt, E. Kirsten, M. Reim, E. Schmidt, F. W. Schmidt U. W. Wesemann: Glykogenose der Leber mit Aminoacidurie und Glucosurie. Klin. Wschr. 41, 818–825 (1963).PubMedGoogle Scholar
  165. 1.
    Cxertok, R. J., W. H. Hulet, and B. Epstein: Effects of cyanide, amytal and DNP on renal sodium reabsorption. Amer. J. Physiol. 211, 1379–1382 (1966).Google Scholar
  166. 2.
    Kocu, K. M., TR. Dume, H. H. Krause u. B. Ochwadt: Intratubulärer Druck, glomerulärer Kapillardruck und Glomerulumfiltrat während Mannit-Diurese. Pflügers Arch. ges. Physiol. 295, 72–79 (1967).Google Scholar
  167. 3.
    Leyssac, P. P.: Dependence of glomerular filtration rate on proximal tubular reabsorption of salt. Acta physiol. stand. 58, 236–242 (1963).Google Scholar
  168. 4.
    Loomis, W. F., and F. Lipman: Reversible inhibition of the coupling between phosphorylation and oxydation. J. biol. Chem. 178, 807–808 (1948).Google Scholar
  169. 5.
    Steinhausen, M., u. J. Iranani: Das Tubuluslumen der Ratte in vivo bei verschiedenen Diuresezuständen und post mortem. Free Comm Intern. Congr. Physiol. Sci. 275, Leiden 1962.Google Scholar
  170. 6.
    Steinhausen, M., u. J. Iranani: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung intratubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol. 277, 23–35 (1963).Google Scholar
  171. 7.
    Steinhausen, M., u. J. Iranani: essungen des tubulären Harnstromes und der tubulären Reabsorption unter erhöhtem Ureterdruck. Intravital-mikroskopische Untersuchungen an der Nierenrinde von Ratten. Pflügers Arch. ges. Physiol. 298, 105–130 (1967).Google Scholar
  172. 1.
    Brockmann, H., and M. Lackner: Totalsynthese von Actinomycin C. Naturwissenschaf ten 47, 230–230 (1960).Google Scholar
  173. 2.
    Burrow, G. N., P. J. Mulrow, and P. K. Bondy: Protein synthesis and aldosterone production. Endocrinology 79, 955–963 (1966).PubMedGoogle Scholar
  174. 3.
    Crabbé, J., and P. De Weer: Action of aldosterone on the bladder and skin of the toad. Nature (Lond.) 202, 298–299 (1964).Google Scholar
  175. 4.
    Edelman, I. S., R. Boooroch, and G. A. Porter: On the mechanism of action of aldosterone on sodium transport: the role of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 50, 1169–1177 (1963).Google Scholar
  176. 5.
    Fanestil, D. D., and I. S. Edelman: the mechanism of action of aldosterone on sodium transport: effects of inhibitors of RNA and protein synthesis. Fed. Proc. 25, 912–916 (1966).PubMedGoogle Scholar
  177. 6.
    Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol. 276, 336–356 (1963).Google Scholar
  178. 7.
    Goldberg, I. H.: Mode of action of antibiotics. II. Drugs affecting nucleic acid and protein synthesis. Amer. J. Med. 39, 722–752 (1965).PubMedGoogle Scholar
  179. 8.
    Rechter, O., and I. D. K. Halkerston: Effects of steroid hormones on gene regulation and cell metabolism. Ann. Rev. Physiol. 27, 133–162 (1965).Google Scholar
  180. 9.
    Hierholzer, K., M. Wiederholt u. H. Stolte: Hemmung der Natriumresorption im proximalen und distalen Konvolut adrenalektomierter Ratten. Pflügers Arch. ges. Physiol. 291, 43–62 (1966).Google Scholar
  181. 10.
    Karlson, P.: Biochemische Wirkungsweise der Hormone. Dtsch. med. Wschr. 86, 668674 (1961).Google Scholar
  182. 11.
    Karlson, P.: New concepts on the mode of action of hormones. Perspect. Biol. Med. 6, 203–221 (1963).PubMedGoogle Scholar
  183. 12.
    Ludens, J. H., J. B. Hook, and H. E. Williamson: Lack of effect of actinomycin D on aldosterone induced antinatriuresis when administered after the hormone. Proc. Soc. exp. Biol. (N.Y.) 124, 539–541 (1967).Google Scholar
  184. 13.
    Malnic, G., R. M. Klose, and G. Giebisch: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol. 206, 674 686 (1964).Google Scholar
  185. 14.
    Neubert, D.: Beeinflussung des Nucleinsäure- und Proteinstoffwechsels durch Pharmaka. Internist (Berl.) 7, 435–454 (1966).Google Scholar
  186. 15.
    Porter, G. A., R. Bogoroch, and I. S. Edelman: On the mechanism of action of aldosterone on sodium transport: the role of RNA synthesis. Proc. nat. Acad. Sci. (Wash.) 52, 1326–1333 (1964).Google Scholar
  187. 16.
    Reich, E., E. M. Franklin, A. J. Saatkin, and E. L. Tatum: Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134, 556 (1961).PubMedGoogle Scholar
  188. 17.
    Reich, E., E. M. Franklin, A. J. Saatkin, and E. L. Tatum: Biochemistry of actinomycins. Cancer Res. 23, 1428–1441 (1963).PubMedGoogle Scholar
  189. 18.
    Samuels, L. D.: Actinomycin and its effects. Influence on an effector pathway for hormonal control. New Engl. J. Med. 271, 1301–1308 (1964).Google Scholar
  190. 19.
    Sharp, G. W. G., and A. Leaf: Mechanism of action of aldosterone. Physiol. Rev. 46, 593–633 (1966).PubMedGoogle Scholar
  191. 20.
    Stolte, H., M. Wiederholt, and K. Hierholzer: Unpublished results.Google Scholar
  192. 21.
    Waksman, S., and H. B. Woodruff: Bacteriostatic and bactericidal substances produced by a soil actinomyces. Proc. Soc. exp. Biol. (N.Y.) 45, 609–614 (1940).Google Scholar
  193. 22.
    Williamson, H. E.: Mechanism of the antinatriuretic action of aldosterone. Biochem. Pharmacol. 12, 1449–1450 (1963).PubMedGoogle Scholar
  194. 23.
    Wiederholt, M.: Mikropunktionsuntersuchungen am proximalen und distalen Konvolut der Rattenniere über den Einfluß von Actinomycin D auf den mineralocorticoidabhängigen Na-Transport. Pflügers Arch. ges. Physiol. 292, 334–342 (1966).Google Scholar
  195. 24.
    H. Stolte, J. P. Brecht u. K. Hierholzer: Mikropunktionsuntersuchungen über den Einfluß von Aldosteron, Cortison und Dexamethason auf die renale Natrium-resorption adrenalektomierter Ratten. Pflügers Arch. ges. Physiol. 292, 316–333 (1966).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • F. Gloor
    • 1
  • D. E. Oken
    • 2
  • M. Wiederholt
  • K. Hierholzer
    • 3
  • K. H. Langer
  • W. Thoenes
  • A. Warning
    • 4
  • H. C. Burck
  • F. Petruch
    • 5
  • F. P. Brunner
  • P. G. Frick
    • 6
  • K. G. Thiele
  • R. C. Muehrcke
    • 7
    • 8
    • 9
  • K. Gellissen
  • H. Schumacher
    • 10
  • U. C. Dubach
    • 11
  • J. Brodehl
  • W. Hagge
    • 12
  • G. M. Eisenbach
  • H. Cain
  • M. Steinhausen
    • 13
  1. 1.Pathologisches InstitutUniversität BaselSwitzerland
  2. 2.Department of MedicinePeter Bent Brigham Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Physiologisches InstitutFreie UniversitätWest-BerlinGermany
  4. 4.Pathologisches InstitutUniversität WürzburgWest Germany
  5. 5.Medizinische Universitätsklinik TübingenGermany
  6. 6.Medizinische Universitätsklinik ZürichGermany
  7. 7.Department of MedicineWest Suburban HospitalOak ParkUSA
  8. 8.Research & Educational HospitalUniversity of IllinoisChicagoUSA
  9. 9.I. Medizinische AbteilungAllgemeinen Krankenhauses BarmbekHamburgGermany
  10. 10.Universitäts-Kinderklinik BonnWest Germany
  11. 11.Medizinische Universitätspoliklinik BaselSwitzerland
  12. 12.Universitäts-Kinderklinik BonnWest Germany
  13. 13.Pathologisches Institut am Städt. Katharinenhospital Stuttgart, Physiologisches InstitutUniversität HeidelbergGermany

Personalised recommendations