Skip to main content

Constraints - Relationen-orientierte Programmierung (1)

  • Chapter
Programmiermethoden der Künstlichen Intelligenz

Part of the book series: Studienreihe Informatik ((STUDIENREIHE))

  • 81 Accesses

Zusammenfassung

Wir hatten schon die Substitution in den logischen Formeln, durch die die Unifikation erreicht wird, mit dem Fluß von Daten verglichen. Wenn man vom Informationsfluß über Variablen in PROLOG-Klauseln ausgeht, kann man sich ein sehr konkretes Modell der Vorgänge machen: Jeder Klausel entspricht danach eine Klasse von kleinen Geräten, die nach außen Anschlüsse und Passungen haben. Diese Geräte können zusammengesteckt werden, wenn die Passungen (inklusive der zugeordneten Anzahl von Anschlüssen) zueinander passen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. H. Abelson, G.J. Sussman: Structure and Interpretation of Computer Programms. MIT-AI-TR 735, MIT Artificial Intelligence Laboratorium, Cambridge, 1983 (MIT-Press und McGraw Hill, Cambridge etc., 1985)

    Google Scholar 

  2. A.V. Aho, J.D. Ullman: Universality of Data Retrieval Languages. 6.P0PL, ACM, 1979

    Google Scholar 

  3. H.G. Barrow, J.M. Tenenbaum: MSYS - A System for Reasoning about Scenes. SRI AI Tech Note 121, April 1976

    Google Scholar 

  4. W. Bibel: Constraint Satisfaction from a Deductive Viewpoint. Artificial Intelligence, Vol. 35 (1988), S. 401–413

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Borning: Constraints and Functional Programming. University of Washington, Dept. of Comp. Sci., Tech. Rep. No. 85–09–05, Seattle, 1985

    Google Scholar 

  6. A. Borning: Defining Constraints Graphically. University of Washington, Dept. of Comp. Sci., Tech. Rep. No. 85–09–05, Seattle, 1985

    Google Scholar 

  7. A. Borning: The Programming Language Aspects of ThingLab, A Constraint-Oriented Simulation Laboratory. ACM Transactions on Programming Languages and Systems, Vol. 3 (1981), No. 4, S. 353–387

    Article  Google Scholar 

  8. A. Borning: ThingLab - A Constraint Oriented Simulation Laboratory. PhD Dissertation, Stanford, 1979

    Google Scholar 

  9. A. Borning: Thinglab - An Object-oriented System for Building Simulations Using Constraints. 5th IJCAI, Cambridge, 1977

    Google Scholar 

  10. M. Brodie, M. Jarke: Logic Programming and Databases. 1. Intl. Worksh. Exp. Database Systems, IIMTP, University of South Carolina, Columbia, SC 29208

    Google Scholar 

  11. A.L. Brown: Qualitative Knowledge, Causal Reasoning, and the Localization of Failures. PhD Thesis, MIT, Dept. of EE, Sept. 1975, AI-TR 362, Cambridge, March, 1977

    Google Scholar 

  12. R. Brown: Automatic Synthesis of Numerical Computer Programs. Unpubl. PhD Thesis Proposal, MIT, Cambridge, Sept. 1978

    Google Scholar 

  13. C.H. Chen (ed.): Pattern Recognition and Artificial Intelligence. Academic Press, New York, 1976

    Google Scholar 

  14. W.F. Clocksin, CS. Mellish: Programming in PROLOG. Springer, Berlin etc., (2nd edn.) 1984

    Book  Google Scholar 

  15. E.F. Codd: Relational Completeness of Data Base Sublanguages. In: R. Rustin (ed.): Data Base Systems, Prentice Hall, Englewood Cliffs, 1972

    Google Scholar 

  16. E. Davis: Constraint Propagation with Interval Labels. Artificial Intelligence, Vol. 32 (1987), S. 281–331

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Dechter: Learning While Searching in Constraint-Satisfaction Problems. Proc. AAAI-86, Philadelphia, 1986

    Google Scholar 

  18. A. Dechter, R. Dechter: Removing Redundancies in Constraint Networks. Proc. AAAI-87, Seattle, 1987

    Google Scholar 

  19. R. Dechter, J. Pearl: Network-Based Heuristics for Constraint-Satisfaction Problems. Artificial Intelligence, Vol. 34 (1988), S. 1–38

    Article  MathSciNet  Google Scholar 

  20. R. Dechter, J. Pearl: A Problem Simplification Approach that Generates Heuristics for Constraint Satisfaction Problems. UCLA-Eng-Rep. 8497 (In: J.E. Hayes, D. Michie, J. Richards (eds.): Machine Intelligence 11, Oxford, 1987)

    Google Scholar 

  21. R. Dechter, J. Pearl: The Anatomy of Easy Problems - A Constraint-Satisfaction Formulation. Proc. IJCAI-85, Los Angeles, 1985

    Google Scholar 

  22. Y. Descotte, J.C. Latombe: Making Compromises among Antagonist Constraints in a Planner. Artificial Intelligence, Vol. 27 (1985), S. 183–217

    Article  Google Scholar 

  23. T.G. Dietterich: Constraint Propagation Techniques for Theory-Driven Data Interpretation. Rep. No. STAN-CS-84–1030, Stanford University, Stanford, 1984

    Google Scholar 

  24. M. Dincbas, H. Simonis, P. van Hentenryck: Extending Equation Solving and Constraint Handling in Logic Programming. Colloq. Resol. of Equat. in Algebr. Struct., Austin, Texas, 1987

    Google Scholar 

  25. M. Dincbas, P. van Hentenryck: Constraints and Logic Programming. ECRC Technical Report LP-9, ECRC, München, 1986

    Google Scholar 

  26. R. Duisberg: Constraint-Bstsed Animation - Temporal Constraints in the Animus System. PhD Thesis, University of Washington, Dept. of Comp. Sci., Tech. Rep. No. 86–09–01, Seattle, 1986

    Google Scholar 

  27. M.S. Fox, B.P. Allen, S.F. Smith, G. Strohm: ISIS - A Constraint Directed Reasoning Approach to Job-Shop-Scheduling. CMU-RI-TR-83–3, Carnegie Mellon University, Pittsburgh, 1983

    Google Scholar 

  28. M.S. Fox, B.P. Allen, G.A. Strohm: Job-Shop-Scheduling - An Investigation in Constraint-Directed Reasoning. Proc. AAAI-82, Pittsburgh, 1982

    Google Scholar 

  29. E.C. Freuder: On the Knowledge Required to Label a Picture Graph. Artificial Intelligence, Vol. 15 (1982)

    Article  MathSciNet  Google Scholar 

  30. E.C. Freuder: Synthesizing Constraint Expressions. Comm.ACM, Vol. 21 (1978), No. 11, S. 958–966

    Article  MathSciNet  MATH  Google Scholar 

  31. E.C. Freuder: Synthesizing Constraint Expressions. MIT AI Memo 370, Cambridge, 1976

    Google Scholar 

  32. H. Geffner, J. Pearl: An Improved Constraint-Propagation Algorithm for Diagnosis. Proc. IJCAI-87, Mailand, 1987

    Google Scholar 

  33. J. Gosling: Algebraic Constraints. CMU-PhD-Thesis, Report CMU-CS-83–132, Carnegie Mellon University, Pittsburgh, 1983

    Google Scholar 

  34. R.W. Grossman: Some Data Base Applications of Constraint Expressions. MIT Lab. Comp. Sci, TR 158, Cambridge, 1976

    Google Scholar 

  35. H.W. Güsgen: CONSAT - A System for Constraint Satisfaction. GMD Birlinghoven, 1987

    Google Scholar 

  36. H.W. Güsgen: CONSAT - A System for Constraint Satisfaction. In: H.W. Früchtenicht etal. (Hrsg.): Technische Expertensysteme - Wissensrepräsentation und Schlußfolgerungsverfahren. München, 1987

    Google Scholar 

  37. H.W. Güsgen: A Constraint Implementation for Menu Systems. Proc. Ohio University Interdiscipl. Conf. 86, Ohio University, Athens, 1986

    Google Scholar 

  38. H.W. Güsgen: CONSATO - Foundations of a System for Constraint-Satisfaction. GMD, Birlinghoven, 1986

    Google Scholar 

  39. H.W. Güsgen: Constraints, eine Wissensrepräsentationsform - Überblick. Arbeitspapiere der GMD 173, GMD, Birlinghoven, 1985

    Google Scholar 

  40. H.W. Güsgen,. J. Hertzberg: Some Fundamental Properties of Local Constraint Propagation. GMD Birlinghoven, 1988

    Google Scholar 

  41. H.W. Güsgen, J. Hertzberg: A Functional View on Constraints. Arbeitspapiere der GMD 252, GMD, Birlinghoven, 1987

    Google Scholar 

  42. H.W. Güsgen, U. Junker, A. Voß: Constraints in a Hybrid Knowledge Representation System. Proc. IJCAI-87, Mailand, 1987

    Google Scholar 

  43. H.W. Güsgen, R. Lopatta: CONSAT - Primer. Forschungsgruppe Expertensysteme, GMD Birlinghoven, 1987

    Google Scholar 

  44. R.M. Haralik, G.L. Elliott: Increasing Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence, Vol. 14 (1980), S. 263–313

    Article  Google Scholar 

  45. R.M. Haralik, L.G. Shapiro: The Consistent Labelling Problem. IEEE Trans. on Pattern Matching and Machine Intelligence, Vol. PAMI-1 (1979), No. 2, Vol. PAMI-2 (1980), No. 3

    Google Scholar 

  46. D.R. Harris: A Hybrid Structured Object and Constraint Representation Language. Proc. AAAI-86, Philadelphia, 1986

    Google Scholar 

  47. U. Hein: Constraints and Event Sequences. LITH-MAT-R-82–02, University of Linkoeping, Linkoeping 1982

    Google Scholar 

  48. P. van Heytenryck: Constraint Satisfaction and Logic Programming. MIT Press, Cambridge, 1989

    Google Scholar 

  49. P. van Heytenryck: A Theoretical Framework for Consistency Techniques in Logic Programming. Proc. IJCAI-87, Mailand, 1987

    Google Scholar 

  50. P. van Heytenryck: Consistency Techniques in Logic Programming. PhD Thesis, University of Namur, 1987

    Google Scholar 

  51. D.A. Huffman: Impossible Objects as Nonsense Sentences. Machine Intelligence, Vol. 6 (1971), S. 295–323

    Google Scholar 

  52. J. Jaffar, J.L. Lassez: Constraint Logic Programming. 14th ACM Symposium on Principles of Programming Languages. München, 1987

    Google Scholar 

  53. V. Jonckers: Constraints in KRS. Internal Paper, AI-Lab., Vrije Universiteit Brussel, 1984

    Google Scholar 

  54. U. Junker: Integration des Constraint-Systems CONSAT in das Werkzeugsystem BABYLON. Interner Bericht, FG Expertensysteme, GMD Birlinghoven, 1986

    Google Scholar 

  55. S. Kasif: On the Parallel Complexity of Some Constraint Satisfaction Problems. Proc. AAAI-86, Philadelphia, 1986

    Google Scholar 

  56. J. de Kleer, G.L. Sussman: Propagation of Constraints Applied to Circuit Synthesis. Curcuit Theory and Applications, Vol. 8 (1980)

    Google Scholar 

  57. P.E. Koton: Representing Constraints with Omega. MIT Working Paper 222, MIT, Cambridge, 1981

    Google Scholar 

  58. W. Leier: Constraint Programming Languages. Addison-Wesley, Reading, etc., 1987

    Google Scholar 

  59. W. Leier: Constraint Languages for Computer Aided Design. SIGDA Newsletter, Vol. 15 (1985), No. 2, S. 11–15

    Article  Google Scholar 

  60. W. Leier: A Small, High-Speed Data-Flow Processor. Proc. Intl. Conference on Parallel Processing. 1983

    Google Scholar 

  61. C. Lischka, H.W. Güsgen: MUSIC - A Constraint-Based Approach to Musical Knowledge Representation. Proc. Intnl. Comput. Music Conf. 86, The Hague, 1986

    Google Scholar 

  62. A.K. Mackworth: Constraint Satisfaction. In: S. Shapiro (ed.): Encyclopedia of Artificial Intelligence. New York, 1987

    Google Scholar 

  63. A.K. Mackworth: On Seeing Things Again. Proc. 8th IJCAI, Karlsruhe, 1983

    Google Scholar 

  64. A.K. Mackworth: Consistency in Networks of Relations. Artificial Intelligence. Vol. 8 (1977), No. 1, S. 99–118

    Article  MATH  Google Scholar 

  65. A.K. Mackworth: How to See a Simple World - An Exegesis of Some Computer Programs for Scene Analysis. In: Elcock, D. Michie (eds.): Machine Intelligence 8, 1977

    Google Scholar 

  66. A.K. Mackworth: Interpreting Pictures of Polyhedral Scenes. Artificial Intelligence, Vol. 4 (1973)

    Google Scholar 

  67. A.K. Mackworth, E.G. Freuder: The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems. Artificial Intelligence, Vol. 25 (1985), S. 65–74

    Article  Google Scholar 

  68. R. Mohr, T.C. Henderson: Arc and Path Consistency Revisited. Artificial Intelligence, Vol. 28 (1986), S. 225–233

    Article  Google Scholar 

  69. U. Montanari: Networks of Constraints - Fundamental Properties and Applications to Picture Processing. Inf. Sciences, Vol. 7 (1974), S. 95–132

    Article  MathSciNet  MATH  Google Scholar 

  70. B.A. Nadel: The General Constraint Labeling (or Constraint Satisfaction) Problem. Tech. Rep. DCS-TR-170, Dept. of Computer Science, Rutgers University, New Brunswick, 1986

    Google Scholar 

  71. G. Nelson: JUNO, a Constraint-Based Graphics System. SIGGRAPH Computer Graphics, Vol. 19 (1985), No. 3, S. 235–243

    Article  Google Scholar 

  72. G. Nelson: How to Use JUNO. XEROX PARC, Comp. Sci. Lab., Manuscript CGNll, Palo Alto, 1984

    Google Scholar 

  73. B. Nudel: Consistent-labeling Problems and Their Algorithms: Expected-complexities and Theory-based Heuristics. Artificial Intelligence, Vol. 21 (1983), S. 135–178

    Article  Google Scholar 

  74. M. Reinfrank: Scenelab - Scene Labelling by a Society of Agents. Diplomarbeit, Kaiserslautern, August 1985

    Google Scholar 

  75. M. Reinfrank: Distributed Constraint Propagation - A Case Study. Memo SEKI-84–07, University of Kaiserslautern, Sept. 1984

    Google Scholar 

  76. A. Rosenfeld, R. Hummel, W. Zucker: Scene Labelling by Relaxation Operations. IEEE Trans Systems, Man and Cybernetics, Vol. SMC-6 (1976), No. 6, S. 420–433

    Article  MathSciNet  MATH  Google Scholar 

  77. W. Rosier, M. Bruynooghe: Empirical Study of Some Constraint Satisfaction Algorithms. Report CW 50, Katholieke Universiteit Leuven, Leuven, 1986

    Google Scholar 

  78. E. Sandewall: Partial Models, Attribute Propagation Systems, and Non-Monotonie Semantics. LITH-IDA-R-83–01, University of Linkoping, Linköping, 1983

    Google Scholar 

  79. J.C. Schwabel, B. McCormick: Consistent Properties of Composite Formation Under a Binary Relation. Inform.Sci., Vol. 2 (1970), S. 179–209

    Article  Google Scholar 

  80. R.M. Stallman, G.J. Sussman: Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis. AI, Vol. 9 (1977), S. 135–196

    MATH  Google Scholar 

  81. G.L. Steele: The Definition and Implementation of a Computer Programming Language Based on Constraints. MIT-AI-TR 595, MIT Artificial Intelligence Laboratorium, Cambridge, 1980

    Google Scholar 

  82. G.L. Steele, G.J. Sussman: Constraints. APL 79 (APL QUOTE QUAD Vol. 9 (1980), No. 4)

    Google Scholar 

  83. G.L. Steele, G.J. Sussman: Constraints. MIT AI-Memo 502, Cambridge, Nov. 1978

    Google Scholar 

  84. L. Steels: Constraints as Consultants. In: L. Steels, J.A. Campbell (eds.): Progress in Artificial Intelligence. Chichester, New York, 1985 (auch in: Proc. 1982 ECAI, Orsay, 1982, S. 75–78)

    Google Scholar 

  85. L. Steels: The Constraint Machine. Schlumberger-Doll-AI Memo 1, Ridgefield, 1980

    Google Scholar 

  86. M. Stefik: Planning with Constraints. Artificial Intelligence, Vol. 16 (1981), S. 111–140

    Article  Google Scholar 

  87. H. Stoyan, G. Görz: LISP - Eine Einführung in die Programmierung. Springer, Berlin etc., 1984

    MATH  Google Scholar 

  88. G.J. Sussman, G.L. Steele: Constraints - A Language for Expressing Almost Hierarchical Descriptions. AI, Vol. 14 (1980), S. 1–39

    Google Scholar 

  89. G.J. Sussman, R.M. Stallman: Heuristic TechniQUEs in Computer-Aided Circuit Analysis. IEEE Trans. Circuit and Systems, Vol. CAS-22, No. 11, 1975

    Article  Google Scholar 

  90. I.E. Sutherland: SKETCHPAD - A Man-Machine Graphical Communication System. MIT, Lincoln Labs, TR 296, Cambridge, Jan. 1963

    Google Scholar 

  91. J.M. Tenebaum, H.G. Barrow: IGS - A Paradigm for Integrating Image Segmentation and Interpretation. In: [12, S.472–507]

    Google Scholar 

  92. J.R. Ullman: Associating Parts of Patterns. Inform and Control, Vol. 9 (1966), No. 12, S. 583–601

    Article  Google Scholar 

  93. J.R. Ullman: Pattern Recognition Techniques. C.Russak, New York, 1973

    Google Scholar 

  94. J.R. Ullman: An Algorithm for Subgraph Isomorphism. Journal ACM, Vol. 23 (1976), No. 1, S. 31–42

    Article  MATH  Google Scholar 

  95. S.H. Unger: GIT - A Heuristic Program for Testing Pairs of Directed Line Graphs for Isomorphism. Comm. ACM, Vol. 7 (1964), No.1, S. 26–34

    Article  MATH  Google Scholar 

  96. M. Vilain, H. Kautz: Constraint Propagation Algorithm for Temporal Reasoning. Proc. AAAA-86, Philadelphia, 1986

    Google Scholar 

  97. A. Voß, H. Voß: Formalizing Local Constraint Propagation Methods. Arbeitspapiere der GMD 248, GMD Birlinghoven, 1987

    Google Scholar 

  98. D.L. Waltz: Generating Semantic Descriptions From Drawings of Scenes With Shadows. MIT-AI-TR 271, Cambridge, 1972

    Google Scholar 

  99. D.L. Waltz: Understanding Line Drawings of Scenes with Shadows. In: P.H. Winston: The Psychology of Computer Vision. New York etc., 1975

    Google Scholar 

  100. P.H. Winston: Artificial Intelligence. Addison-Wesley, Reading etc., 1984

    Google Scholar 

  101. C. Zaniolo: PROLOG - a Database Query Language for All Seasons. 1. Intl. Worksh. Exp. Database Systems, IIMTP, University of South Carolina, Columbia, SC 29208

    Google Scholar 

  102. S.W. Zucker: Relaxation Labelling, Local Ambiguity, and Low-Level Vision. in [12, S.593–616]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoyan, H. (1991). Constraints - Relationen-orientierte Programmierung (1). In: Programmiermethoden der Künstlichen Intelligenz. Studienreihe Informatik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87955-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87955-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52469-4

  • Online ISBN: 978-3-642-87955-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics