Skip to main content

The Conjectures of Birch and Swinnerton-Dyer, and of Tate

  • Conference paper
Proceedings of a Conference on Local Fields

Abstract

In the last few years, it has become increasingly evident that the study of the zeta-function of an algebraic variety can yield valuable information about that variety, some of which cannot easily be obtained in any other way. Most of this information is number-theoretic — that is to say, it refers to objects which depend on the ground field and which are only of interest when the ground field is finitely generated. But some of it refers to objects, such as the Néron-Severi group, which are also of interest to classical algebraic geometers — and about which classical algebraic geometry has little to say.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birch,B. J., and N. M. Stephens:The parity of the rank of the Mordell-Weil group. Topology 5, 295–299 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  2. Birch, B. J., and H. P. F. Swinnerton-Dyer: Notes on elliptic curves I, J. reine angew. Math. 212, 7–25 (1963).

    MathSciNet  MATH  Google Scholar 

  3. Birch, B. J., and H. P. F. Swinnerton-Dyer: Notes on elliptic curves II, J. reine angew. Math. 218, 79–108 (1965).

    MathSciNet  MATH  Google Scholar 

  4. Bombieri, E. and H. P. F. Swinnerton-Dyer: The zeta function of a cubic threefold. Annali di Pisa 21, 1–29 (1967).

    MathSciNet  MATH  Google Scholar 

  5. Cassels, J. W. S.: Arithmetic on curves of genus 1 (IV) Proof of the Hauptvermutung. J. reine angew. Math. 211, 95–112 (1962).

    MathSciNet  MATH  Google Scholar 

  6. Cassels,J. W. S.: Diophantine equations with special reference to elliptic curves, J. Lond Math. Soc. 41 .193–219 (1966).

    Article  MathSciNet  Google Scholar 

  7. Eichler, M.: Quaternäre quadratische Formen und die Riemann Vermutung für die Konnruenzzetafunktion. Arch. Math. 5, 355–366 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  8. Fricke, R. : Die elliptischen Funktionen und ihre Anwendungen. Vol. 2, Leipzig 1922.

    MATH  Google Scholar 

  9. Grothendieck, A.: Le groupe de Brauer I. Sém. Bourbaki 290 (1965).

    Google Scholar 

  10. Grothendieck, A.: Le groupe de Brauer II. Sém. Bourbaki 297 (1965).

    Google Scholar 

  11. Grothendieck, A.: Le groupe de Brauer III. Mimeo notes I.H.E.S. (1966).

    Google Scholar 

  12. Hecke, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Zweite Mitteilung. Math. Z. 6, 11–51 (1920).

    Article  MathSciNet  Google Scholar 

  13. Hecke, E.: Űber Modulfunktionen und die Dirichletschen Reihen mit Eulerschen Produktentwicklung. Math. Ann. 114, 1–28 and 316–351, (1937).

    Article  MathSciNet  Google Scholar 

  14. Lang, S.: Diophantine Geometry. New York 1962.

    MATH  Google Scholar 

  15. Lang, S.: Les formes bilinéaires de Néron et Tate. Sém. Bourbaki 274 (1964).

    Google Scholar 

  16. Mordell, L. J.: On the rational solution of the indeterminate equations of the third and fourth degrees. Proc. Camb. Phil. Soc. 21, 179–192, (1922).

    Google Scholar 

  17. Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. IHES 21 (1964).

    Google Scholar 

  18. Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math. 82, 249–331, (1965).

    Article  MATH  Google Scholar 

  19. Ogg, A. P.: Elliptic curves and wild ramification, Amer. J. Math. 89, 1–21 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  20. Ogg, A. P.: Abelian curves of 2-power conductor. Proc. Camb. Phil. Soc. 2, 143–148, (1966).

    Article  MathSciNet  Google Scholar 

  21. Petersson, H.: Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung. Math. Ann. 116. 401–412 (1939) and 117, 39–64 and 277–300, (1940).

    Article  MathSciNet  Google Scholar 

  22. Shimura, G. and Taniyama, Y. Complex multiplication of Abelian varieties. Publ Math. Soc. Japan 6 (1961).

    MATH  Google Scholar 

  23. Shimura, G.: Correspondances modulaires et les fonctions zeta de courbes algébriques J. Math. Soc. Japan 10, 3–28, (1958).

    MathSciNet  Google Scholar 

  24. Stephens, N. M.: Thesis Manchester, (1965).

    Google Scholar 

  25. Stephens,N. M.: Conjectures concerning elliptic curves. (In press).

    Google Scholar 

  26. Tate, J.: Duality theorems in gaiois conomology over nummmuer fields. Congress Math. Stockholm, 288–295, (1962).

    Google Scholar 

  27. Tate, J.: Algebraic cohomology classes, Mimeo notes Woods Hole (1964).

    Google Scholar 

  28. Tate, J.: Algebraic cycles and poles of zeta functions. Proc. ruraue univ. Conf. 1963. New York 93–110, (1965).

    Google Scholar 

  29. Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki 306 (1966).

    Google Scholar 

  30. Weil, A.: L’arithmétique sur les courbes algébriques, Acta Math. 52, 281–315, (1928).

    Article  MathSciNet  Google Scholar 

  31. Weil, A.: On algebraic groups and homogenous spaces, Amer. J. Math. 77, 493–512, (1955).

    Article  MathSciNet  MATH  Google Scholar 

  32. Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168, 149–156 (1967).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swinnerton-Dyer, P. (1967). The Conjectures of Birch and Swinnerton-Dyer, and of Tate. In: Springer, T.A. (eds) Proceedings of a Conference on Local Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87942-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87942-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87944-9

  • Online ISBN: 978-3-642-87942-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics