Chemical Composition of Wood

  • Wilfred A. Côté

Abstract

The walls of wood cells are composed of three principal chemical materials, cellulose, hemicelluloses and lignin, all of which are polymeric. With the initiation of daughter cells through cell division at the cambium, new walls are formed, the primary wall which encloses the new unit, and the middle lamella or intercellular layer which separates adjoining cells. Both of these regions are rich in pectic material. During the phase of cell wall thickening, cellulose and hemicelluloses are synthesized within the cell and deposited onto the primary wall, forming a secondary wall. The formation of lignin begins before this phase is complete (cell elongation may still be going on), starting at the cell corners and spreading along the primary wall and intercellular layer. Finally, lignification proceeds to the secondary wall after which the cell dies and the remaining cytoplasmic débris is deposited on the lumen walls in the form of a terminal lamella or a warty membrane.

Keywords

Bark Tritium Mannose Cellobiose Sulfite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, M. F. and Douglas, C., (1963) Arabinogalactan—A review of the literature. Tappi 46: 544–548.Google Scholar
  2. Alexander, W. J. and Mitchell, R. L., (1949) Rapid measurement of cellulose viscosity by the nitration method. Anal. Chem. 21: 1497–1500.Google Scholar
  3. Adler, E., (1957) Newer views on lignin formation. Tappi 40: 294–301.Google Scholar
  4. Adler, E., (1959) Chinoide Strukturen und Benzolalkoholgruppierungen in der Chemie und Biochemie des Lignins. In Kratzl, K. and Billek, G., 137–153.Google Scholar
  5. Adler, E., (1961) Über den Stand der Ligninforschung. Papier 15: 604–609.Google Scholar
  6. Aspinal, G. O. and Ross, K. M., (1963) The degradation of two periodate-oxidized arabinoxylans. J. Chem. Soc. 1681–1686.Google Scholar
  7. Asunmaa, S. and Lange, P.W., (1954) The distribution of “cellulose” and “hemicellulose” in the cell wall of spruce, birch and cotton. Svensk Papperstid. 57: 501–516.Google Scholar
  8. Bailey, A. J., (1936) Lignin in Douglas-fir. Composition of the middle lamella. Ind. Eng. Chem. Anal. Ed. 8: 52–55.Google Scholar
  9. Bailey, A. J., (1936) Lignin in Douglas-fir. The pentosan content of the middle lamella. Ind. Eng. Chem. Anal. Ed. 8: 389–391.Google Scholar
  10. Björkman, A., (1956) Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Svensk Papperstid. 59: 477–485.Google Scholar
  11. Björkman, A., (1957) Studies on finely divided wood. Part 2. The properties of lignins extracted with neutral solvents from softwoods and hardwoods. Svensk Papperstid. 60: 158–169.Google Scholar
  12. Björkman, A., (1957) Studies on finely divided wood. Part 3. Extraction of lignin-carbohydrate complexes with neutral solvents. Svensk Papperstid. 60: 243–251.Google Scholar
  13. Björkman, A., (1957) Studies on finely divided wood. Part 5. The effect of milling. Svensk Papperstid. 60: 329–335.Google Scholar
  14. Björkman, A., (1957) Lignin and lignin-carbohydrate complexes—Extraction from wood meal with neutral solvents. Ind. Eng. Chem. 49: 1395–1398.Google Scholar
  15. Björkman, A. and Person, B., (1957) Studies on finely divided wood. Part 4. Some reactions of the lignin extracted by neutral solvents from Picea abies. Svensk Papperstid. 60: 285–292.Google Scholar
  16. Bland, D. E., (1958) The chemistry of reaction wood. Part I. The lignins of Eucalyptus goniocalyx and Pinus radiata. Holzforschung 12: 36–43.Google Scholar
  17. Bland, D. E., (1961) The chemistry of reaction wood. Part 3. The milled wood lignins of Eucalyptus goniocalyx and Pinus radiata. Holzforschung 15: 102–106.Google Scholar
  18. Bouveng, H. O., (1961) Studies on some wood polysaccharides. Svensk Kem. Tidskr. 73: 115–131.Google Scholar
  19. Bouveng, H. O. and Lindberg, B. G., (1960) Methods in structural polysaccharide chemistry. Advan. Carbonhydrate Chem. 15: 53–89.Google Scholar
  20. Bouveng, H. O. and Meier, H., (1959) Studies on a galactan from Norwegian spruce compression wood (Picea abies Karst.). Acta Chem. Scand. 13: 1884–1889.Google Scholar
  21. Brauns, F. E., (1939) Native lignin I. Its isolation and methylation. J. Am. Chem. Soc. 61: 2120–2127.Google Scholar
  22. Brauns, F. E. and Brauns, D. A., (1960) The Chemistry of Lignin. Academic Press. New York, N. Y.Google Scholar
  23. Browning, B. L., Editor (1963) The Chemistry of Wood. John Wiley and Sons—Interscience Publishers, New York, N. Y.Google Scholar
  24. Bucher, H., (1960) Zur Topochemie des Holzaufschlusses. Papier 14: 542–549.Google Scholar
  25. Colvin, J. R., (1963) The size of the cellulose microfibril. J. Cell Biol. 17: 105–109.PubMedGoogle Scholar
  26. Côté, W. A., Jr. and Day, A. C., (1962) The G-layer in gelatinous fibers—electron microscopic studies. Forest Prod. J. XII (7): 333–339.Google Scholar
  27. Côté, W. A. and Timell, T. E., (1964) Unpublished results.Google Scholar
  28. Croon, I., (1961) Tryckved och dragved, morfologi och kemisk sammansättning. Svensk Papperstid. 64: 175–180.Google Scholar
  29. Croon, I., Lindberg, B. and Meier, H., (1959) Structure of a glucomannan from Pinus silvestris L. Acta Chem. Scand. 13: 1299–1304.Google Scholar
  30. Elbein, A. D., Barber, G. A. and Hassid, W. Z., (1964) The synthesis of cellulose by an enzyme system from a higher plant. J. Am. Chem. Soc. 86: 309–310.Google Scholar
  31. Entwistle, D., Cole, E. H. and Wooding, N. S., (1949) The autoxidation of alkali cellulose I. An experimental study of the kinetics of the reaction. Textile Res. J. 19: 527–546.Google Scholar
  32. Erdtman, H., (1959) Conifer chemistry and taxonomy of conifers. In Kratzl, K. and Billek, G., 1–28.Google Scholar
  33. Freudenberg, K., (1959) Biochemische Vorgänge bei der Holzbildung. In Kratzl, K. and Billek, G., 121–136.Google Scholar
  34. Freudenberg, K., (1960) Principles of lignin growth. J. Polymer Sci. 48: 371–377.Google Scholar
  35. Freudenberg, K., (1962) Biogenesis and constitution of lignin. Pure Appl. Chem. 5: 9–20.Google Scholar
  36. Frey-Wyssling, A., (1959) Die Pflanzliche Zellwand. Springer-Verlag, Berlin.Google Scholar
  37. Gardner, J. A. F., (1962) The tropolones. In Hillis, W. E., 317–330.Google Scholar
  38. Gierer, J., (1958) Über die Isolierung, Struktur und Biosynthese des Lignins. Holz Roh-Werkstoff 16: 251–262.Google Scholar
  39. Goldschmid, H. R. and Perlin, A. S., (1963) Interbranch sequences in the wheat arabinoxylan. Can. J. Chem. 41: 2272–2277.Google Scholar
  40. Goring, D. A. I., (1962) The physical chemistry of lignin. Pure Appl. Chem. 5: 233–254.Google Scholar
  41. Goring, D. A. I. and Timell, T. E., (1962) Molecular weight of native celluloses. Tappi 45: 454–460.Google Scholar
  42. Greathouse, G. A., (1959) On the enzymic polysaccharide synthesis. In Kratzl, K. and Billek, G., 76–81.Google Scholar
  43. Greenwood, C. T., (1956) Aspects of the physical chemistry of starch. Advan. Carbohydrate Chem. 11: 335–393.Google Scholar
  44. Gustafsson, C., Ollimaa, P. J. and Saarnio, J., (1952) The carbohydrates in birch wood. Acta Chem. Scand. 6: 1299–1300.Google Scholar
  45. Hägglund, E., (1951) Chemistry of Wood. Academic Press, New York, N. Y.Google Scholar
  46. Hamilton, J. K., Partlow, E. V. and Thompson, N. S., (1960) The nature of a galactoglucomannan associated with wood cellulose from southern pine. J. Am. Chem. Soc. 82:451–457.Google Scholar
  47. Hamilton, J. K. and Quimby, G. R., (1957) The extractive power of lithium, sodium, and potassium hydroxide solutions for the hemicelluloses associated with wood cellulose and holocellulose from western hemlock. Tappi 40: 781–786.Google Scholar
  48. Harris, G. C., (1952) Wood resins. In Wise, L. E. and Jahn, E. C., 590–617.Google Scholar
  49. Hathway, D. E., (1962) The condensed tannins. In Hillis, W. E., 191–228.Google Scholar
  50. Hathway, D. E., (1962) The lignins. In Hillis, W. E., 159–190.Google Scholar
  51. Henley, D., (1960) The cellulose solvent cadoxen, a preparation, and a viscometric relationship with cupriethylenediamine. Svensk Papperstid. 60: 143–146.Google Scholar
  52. Hermans, P. H., (1949) Physics and Chemistry of Cellulose Fibres. Elsevier Publishing Co., New York, N. Y.Google Scholar
  53. Hermans, P. H., (1951) X-ray investigations on the crystallinity of cellulose. Makromol. Chem. 6: 25–29.Google Scholar
  54. Hillis, W. E., Editor (1962) Wood Extractives. Academic Press, New York, N. Y.Google Scholar
  55. Hillis, W. E., (1962) The distribution and formation of polyphenols within the tree. In Hillis, W. E., 59–131.Google Scholar
  56. Hirst, E. L. and Jones, J. K. N., (1946) The chemistry of pectic materials. Advan. Carbohydrate Chem. 2: 235–251.Google Scholar
  57. Honeyman, J., Editor (1959) Recent Advances in the Chemistry of Cellulose and Starch. Heywood and Company, London.Google Scholar
  58. Howsmon, J. A., (1949) Water sorption and the polyphase structure of cellulose. Textile Res. J. 19: 152–162.Google Scholar
  59. Jones, J. K. N., Wise, L. E. and Jappe, J., (1956) The action of alkali containing metaborates on wood cellulose. Tappi 39: 139–141.Google Scholar
  60. Jorgensen, L., (1950) Studies on the Partial Hydrolysis of Cellulose. Emil Moestue A/S, Oslo.Google Scholar
  61. Jurd, L., (1962) The hydrolyzable tannins. In Hillis, W. E., 229–260.Google Scholar
  62. Krahmer, R. L. and Côté, W. A., Jr., (1963) Changes in coniferous wood cells associated with heartwood formation. Tappi 46: 42–49.Google Scholar
  63. Kratzl, K., (1959) Biochemie des Holzes. Ein Bericht über Symposium II. In Kratzl, K. and Billek, G., 247–285.Google Scholar
  64. Kratzl, K., (1960) On the biosynthesis of gymnospermae and angiospermae lignins. Tappi 43: 650–653.Google Scholar
  65. Kratzl, K., (1961) Zur Biogenese des Lignins. Holz Roh- Werkstoff 19: 219–232.Google Scholar
  66. Kratzl, K., and Billek, G., (1957) Synthesis and testing of lignin precursors. Tappi 40: 269–285.Google Scholar
  67. Kratzl, K., Editors (1959) Biochemistry of Wood. Pergamon Press, London.Google Scholar
  68. Kurth, E. F., (1952) The volatile oils. In Wise, L. E. and Jahn, E. C., 548–589.Google Scholar
  69. Lange, P. W., (1954) The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods. Svensk Papperstid. 57: 525–532.Google Scholar
  70. Liang, C. Y., Bassett, K. H., McGinnes, E. A. and Marchessault, R. H., (1960) Infrared spectra of crystalline polysaccharides VII. Thin wood sections. Tappi 43: 1017–1024.Google Scholar
  71. Lindberg, B., (1957) Die Chemie der übrigen Wandsubstanzen. In Treiber, E., 386–397.Google Scholar
  72. Lindgren, B. O., (1958) The lignin-carbohydrate linkage. Acta Chem. Scand. 12: 447–452.Google Scholar
  73. Manley, R. St. J., (1963) Growth and morphology of single crystals of cellulose triacetate. J. Polymer Sci. Part A l: 1875–1892.Google Scholar
  74. Manley, R. St. J., (1963) Hydrolylis of cellulose triacetate crystals. J. Polymer Sci. Part A 1: 1893–1899.Google Scholar
  75. Mann, J. and Marrinan, H. J., (1956) Reaction between cellulose and heavy water I. Qualitative study by infrared spectroscopy. Trans. Faraday Soc. 52: 481–487.Google Scholar
  76. Mann, J. and Marrinan, H. J., (1956) Reaction between cellulose and heavy water II. Measurement of absolute accessibility and crystallinity. Trans. Faraday Soc. 52: 487–492.Google Scholar
  77. Mann, J. and Marrinan, H. J., (1956) Reaction between cellulose and heavy water III. Quantitative study by infrared spectroscopy. Trans. Faraday Soc. 52: 492–497.Google Scholar
  78. Manners, D. J., (1962) Enzymic synthesis and degradation of starch and glycogen. Advan. Carbohydrate Chem. 17: 371–430.Google Scholar
  79. Marchessault, R. H. and Liang, C. Y. (1962) The infrared spectra of crystalline polysaccharides VIII. Xylans. J. Polymer Sci. 59: 357–378.Google Scholar
  80. Marchessault, R. H., Morehead, F. F., Walters, N. M., Glaudemans, C. P. J., and Timell, T. E., (1961) Morphology of xylan single crystals. J. Polymer Sci. 51: S 66–S 68.Google Scholar
  81. Mark, H., (1940) Intermicellar hole and tube system in fiber structure. J. Phys. Chem. 44: 764–788.Google Scholar
  82. Meier, H., (1955) Über den Zellwandabbau durch Holzvermorschungspilze und die submikroskopische Struktur von Fichtentracheiden und Birkenholzfasern. Holz Roh- Werkstoff 13: 323–338.Google Scholar
  83. Meier, H., (1958) On the structure of cell walls and cell wall mannans from ivory nuts and from dates. Biochim. Biophys. Acta 28: 229–240.PubMedGoogle Scholar
  84. Meier, H., (1961a) Isolation and characterisation of an acetylated glucomannan from pine (Pinus silvestris L.). Acta Chem. Scand. 15: 1381–1385.Google Scholar
  85. Meier, H., (1961b) The distribution of polysaccharides in wood fibers. J. Polymer Sci. 51: 11–18.Google Scholar
  86. Meier, H., (1962a) Chemical and morphological aspects of the fine structure of wood. Pure App. Chem. 5: 37–52.Google Scholar
  87. Meier, H., (1962b) Studies on a galactan from tension wood of beech (Fagus silvatica L.) Acta Chem. Scand. 16: 2275–2283.Google Scholar
  88. Meier, H. and Wilkie, K. C. B., (1959) The distribution of polysaccharides in the cell wall of tracheids of pine (Pinus silvestris L.) Holzforschung 13: 177–182.Google Scholar
  89. Meier, H. and Yllner, S., (1956) Die Tertiarwand in Fichtenzellstoff-Tracheiden. Svensk Papperstid. 59: 395–401.Google Scholar
  90. Merewether, J. W. T., (1957) Lignin-carbohydrate complex in wood. Holzforschung 11: 65–80.Google Scholar
  91. Meyer, K. H. and Mark, H., (1929) Über den Bau des kristallisierten Anteils der Cellulose II. Z. physik. Chem. B 2: 115–145.Google Scholar
  92. Meyer, K. H. and Misch, L., (1937) Position des atomes dans le nouveau modèle spatial de la cellulose. Helv. Chim. Acta 20: 232–244.Google Scholar
  93. Mühlethaler, K., (1960) Die Feinstruktur der Zellulosemikrofibrillen. Beih. Zeit. Schweiz. Forstv. 30: 55–65.Google Scholar
  94. Mühlethaler, K., (1963) Feinstruktur der Cellulosefaser. Papier 17: 546–550.Google Scholar
  95. Mutton, D. B., (1962) Wood resins. In Hillis, W. E., 331–363.Google Scholar
  96. Neish, A. C., (1959) Biosynthesis of hemicelluloses. In Kratzl, K. and Billek, G., 82–91.Google Scholar
  97. Neish, A. C., (1960) Biosynthetic pathways of aromatic compounds. Ann. Rev. Plant Physiol. 11: 55–80.Google Scholar
  98. Nelson, R. and Schuerch, C., (1956) Factors influencing the removal of pentosan from birch wood: evidence on the lignin-carbohydrate bond. J. Polymer Sci. 22: 435–448.Google Scholar
  99. Nelson, R. and Schuerch, C., (1957) The extraction of pentosans from woody tissues II. Tappi 40: 419–426.Google Scholar
  100. Neufeld, E. F. and Hassid, W. Z., (1963) Biosynthesis of saccharides from glycopyranosyl esters of nucleotides (“Sugar nucleotides”). Advan. Carbohydrate Chem. 18: 309–356.Google Scholar
  101. Nord, F. F. and Schubert, W. J., (1959) Lignification. In Kratzl, K. and Billek, G., 189–206.Google Scholar
  102. Northcote, D. H., (1958) The cell walls of higher plants: their composition, structure and growth. Biol Reviews 33: 53–102.Google Scholar
  103. Ott, E., Spurlin, H. M. and Grafflin, M. W., Editors (1954) Cellulose and Cellulose Derivatives. Interscience Publishers, New York, N. Y.Google Scholar
  104. Perilä, O., (1961) The chemical composition of carbohydrates of wood cells. J. Polymer Sci. 51: 19–26.Google Scholar
  105. Perilä, O., (1962) The chemical composition of wood cells. III. Carbohydrates of birch cells. Suomen Kemistilehti B 35: 176–178.Google Scholar
  106. Perilä, O. and Heitto, P., (1959) The chemical composition of wood cells I. Carbohydrates of pine cells. Soumen Kemistilehti B 32: 76–80.Google Scholar
  107. Perilä, O. and Seppä, T., (1960) The chemical composition of wood cells II. Carbohydrates of spruce cells. Suomen Kemistilehte B 33: 114–116.Google Scholar
  108. Pikder, A. R., (1960) Chemistry of the Terpenes. John Wiley and Sons. New York, N.Y.Google Scholar
  109. Preston, R. D. and Frei, E., (1961) Variants in the structural polysaccharides of algal cell walls. Nature 192: 939–943.Google Scholar
  110. Reimer, H., (1962) Ein vereinfachtes Verfahren zur Herstellung von Triäthylendiamin-Cadmium (II)-hydroxid. Papier 16: 566–568.Google Scholar
  111. Roelofsen, P. A., (1959) The Plant Cell Wall. Gebrüder Borntraeger, Berlin-Nikolassee.Google Scholar
  112. Sachs, I. B., Clark, I. T. and Pew, J. C., (1963) Investigation of lignin distribution in the cell wall of certain woods. J. Polymer Sci., Part C, No. 2: 203–212.Google Scholar
  113. Schwerin, G., (1958) The chemistry of reaction wood II. The polysaccharides of Eucalyptus goniocalyx and Pinus radiata. Holzforschung 12: 43–48.Google Scholar
  114. Sepall, O. and Mason, S. G., (1961) Hydrogen exchange between cellulose and water I. Measurement and accessibility. Can. J. Chem. 39: 1934–1943.Google Scholar
  115. Sepall, O. and Mason, S. G., (1961) Hydrogen exchange between cellulose and water II. Interconversion of accessible and inaccessible regions. Can. J. Chem. 39: 1944–1955.Google Scholar
  116. Simonsen, J. L., (1947) The Terpenes. Cambridge University Press, 1947–1957.Google Scholar
  117. Stewart, C. M., Kottek, J. F., Dadswell, H. E. and Watson, A. J., (1961) The process of fiber separation III. Hydrolytic degradation within living trees and its effect on the mechanical pulping and other properties of wood. Tappi 44: 798–813.Google Scholar
  118. Tappi, (1954) Holocellulose in Wood. Standard Method T 9 m-54.Google Scholar
  119. Thornber, J. P. and Northcote, D. H., (1961) Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees 1. Main components. Biochem. J. 81: 449–455.PubMedGoogle Scholar
  120. Thornber, J. P. and Northcote, D. H., (1962) 2. Carbohydrate constituents of each main component. Biochem. J. 81: 455–464.Google Scholar
  121. Thornber, J. P. and Northcote, D. H., (1962) 3. Xylan, glucomannan and α-cellulose fractions. Biochem. J. 82: 340–346.PubMedGoogle Scholar
  122. Timell, T. E., (1957) Molecular properties of seven wood celluloses. Tappi 40: 25–29.Google Scholar
  123. Timell, T. E., (1960) Isolation of hardwood glucomannans. Svensk Papperstid. 63: 472–476.Google Scholar
  124. Timell, T. E., (1960) Isolation and properties of a glucomannan from the wood of white birch (Betula papyrifera Marsh.) Tappi 43: 844–888.Google Scholar
  125. Timell, T. E., (1961) Isolation of galactoglucomannans from the wood of gymnosperms. Tappi 44: 88–96.Google Scholar
  126. Timell, T. E., (1964, 1965) Wood Hemicelluloses. Advan. Carbohydrate Chem. Vols. 19 and 20.Google Scholar
  127. Treiber, E., Editor (1957) Die Chemie der Pflanzenzellwand. Springer-Verlag, Berlin.Google Scholar
  128. Wald, W. J., Ritchie, P. F. and Purves, C. B., (1947) The elementary composition of lignin in northern pine and black spruce woods, and of the isolated Klason and periodate lignins. J. Am. Chem. Soc. 69: 1371–1377.PubMedGoogle Scholar
  129. Wardrop, A. B. and Dadswell, H. E., (1948) The nature of reaction wood. I. The structure and properties of tension wood fibres. Australian J. Sci. Res. B 1: 3–16.Google Scholar
  130. Wardrop, A. B. and Dadswell, H. E., (1950) The nature of reaction wood. II. The cell wall organization of compression wood tracheids. Australian J. Sci. Res. B 3: 1–13.Google Scholar
  131. Wardrop, A. B. and Dadswell, H. E., (1952) The nature of reaction wood. III. Cell division and cell wall formation in conifer stems. Australian J. Sci. Res. B 5: 385–398.Google Scholar
  132. Wardrop, A. B. and Dadswell, H. E., (1955) The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Australian J. Bot. 3: 177–189.Google Scholar
  133. Whelan, W. J., (1959) The enzymic synthesis and degradation of cellulose and starch. In Honeyman, J., 307–336.Google Scholar
  134. Whelan, W. J., (1963) Recent advances in starch metabolism. Stärke 15: 247–251.Google Scholar
  135. Whistler, R. L. and BeMiller, J. N., (1958) Alkaline degradation of polysaccharides. Advan. Carbohydrate Chem. 13: 289–329.Google Scholar
  136. Whistler, R. L. and Smart, C. L., (1953) Polysaccharide chemistry. Academic Press, Inc., New York, N.Y. pp. 161–197.Google Scholar
  137. Wise, L. E. and Jahn, E. C., (1952) Wood Chemistry. Reinhold Publ. Corp., New York, N.Y.Google Scholar
  138. Wise, L. E., Murphy, M. and D’Addieco, A. A., (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 122 (2): 35–43.Google Scholar
  139. Zaǐtseva, A. F., (1959) The localization of arabinogalactan in the cell walls of Larix dahurica. Trudy Inst. Lesa, Aka. Nauk S. S. S. R., Izuchenie Khim. Sostava Drevesiny Daursk Listvennitsy 45: 50–60.Google Scholar
  140. Zaǐtseva, A. F., (1959) The localization of arabinogalactan in the cell walls of Larix dahurica. Trudy Inst. Lesa, Aka. Nauk S. S. S. R., Izuchenie Khim. (Chem. Abstracts 53: 4439 (1959).)Google Scholar
  141. Zimmermann, M. H., Editor (1964) The Formation of Wood in Forest Trees. Academic Press, New York, N.Y.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1968

Authors and Affiliations

  • Wilfred A. Côté

There are no affiliations available

Personalised recommendations