Resonance in Prey-Predator Systems

  • P. K. Ghosh
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 52)

Abstract

The role of periodically varying parameters in prey-predator systems is studied. In Lotka-Volterra (LV) and Volterra-Gause-Witt models, it is found that under certain conditions populations can resonate with the periodicities of the parameters. Parametric instability of LV oscillations is studied. Biological implications of the results are discussed.

Keywords

Eucalyptus Peaked 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auslander, D.M., G.F. Oster and C.B. Huffaker (1974): Dynamics of interacting populations, J. Franklin Inst. 297: 345–376.CrossRefGoogle Scholar
  2. Butler, G.J. and H.I. Freedman (1981): Periodic solutions of a predator-prey system with periodic coefficients, Math. Biosc. 55: 27–38.MathSciNetMATHCrossRefGoogle Scholar
  3. Cushing, J.M. (1977): Periodic time-dependent predator-prey systems, SIAM J. AppZ. Math. 32: 82–95.MathSciNetMATHCrossRefGoogle Scholar
  4. Dutt, R., P.K. Ghosh and B.B. Karmakar (1975): Application of perturbation theory to the nonlinear Volterra-Gause-Witt model for prey-predator interaction, Bull. Math. BioZ. 37: 139–146.MATHGoogle Scholar
  5. Freedman, H.I., and L. Manetta (1981): Predator-prey systems with a perturbed periodic carrying capacity, Utilitas Math. 19: 141–155.MathSciNetMATHGoogle Scholar
  6. Gilpin, M.E. (1973): Do hares eat lynx?, Amer. Nat. 107: 727–730.CrossRefGoogle Scholar
  7. Goel, N.S., S.C. Maitra and E.W. Montroll (1971): On the Volterra and other non-linear models of interacting populations, Rev. Mod. Phys. 43: 231–276.MathSciNetCrossRefGoogle Scholar
  8. Hyver, C. (1975): Existence de resonances parametriques dans des systemes de transformation d’interact biologique, Bull. Math. BioZ. 37: 1–9.MATHGoogle Scholar
  9. Kannan, D. (1979): Volterra-Verhulst prey-predator systems with time dependent coefficients. Diffusion type approximation and periodic solutions, Bull. Math. Biol. 41: 229–251.MathSciNetMATHGoogle Scholar
  10. Landau, L.D. and E.M. Lifshitz (1969): Mechanics, Pergamon Press, Oxford.Google Scholar
  11. May, R.M. (1974): Stability and Complexity in Model Ecosystems, Princeton Univ. Press, Princeton.Google Scholar
  12. May, R.M. (1981): Theoretical Ecology: Principles and Applications, Blackwell, Oxford.Google Scholar
  13. Minorsky, N. (1962); Nonlinear Oscillations, Van Nostrand, Princeton, N.J.MATHGoogle Scholar
  14. Myers, J.H., and C.J. Krebs (1974): Populations cycles in rodents, Scientific Amer. 230–38–46.Google Scholar
  15. Nisbet, R.M., and W.S.C. Gurney (1982): Modelling Fluctuating Populations, John Wiley and Sons, New York.MATHGoogle Scholar
  16. Odum, E.P. (1971): Fundamentals of Ecology, W.B. Saunders Co., Philadelphia.Google Scholar
  17. Oster, G.F., and Y. Takahasi (1974): Models for age-specific interactions in a periodic environment, EcoZ. Monographs 44: 483–501.CrossRefGoogle Scholar
  18. Rosenblatt, S. (1980): Population models in a periodically fluctuating environment, J. Math. BioZ. 9: 23–36.CrossRefGoogle Scholar
  19. Slobodkin, L.P. (1961): Growth and Regulation of Animal Populations, Holt, Rinehart and Winston, New York.Google Scholar
  20. Wiegart, R.G., et al. (1975): A preliminary ecosystem model of coastal Georgia Spartina marsh, Estuarine Research 1: 563–601.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • P. K. Ghosh

There are no affiliations available

Personalised recommendations