Skip to main content

RFLP Mapping of Plant Nuclear Genomes: Planning of Experiments, Linkage Map Construction, and QTL Mapping

  • Chapter
Plant Molecular Biology — A Laboratory Manual

Part of the book series: Springer ((SLM))

Abstract

Mapping of plant genomes began soon after the development of genetic mapping in Drosophila in the early 1900s. These efforts were driven in part by the recognition that genetic maps could facilitate indirect selection based on associations between desired traits and more easily determined characters. As early as the 1930s, genetic linkage groups were presented for tomato (MacArthur 1934) and maize (Emerson et al. 1935). These linkage groups consisted entirely of loci that caused discrete and visible changes in morphological characteristics, and until the 1970s genetic mapping was restricted to these types of markers. Because the number of morphological markers segregating within one cross is generally limited, combination of segregation data from multiple crosses was required to construct one complete linkage map (that is, a map covering an entire genome; e.g. Rick 1980). The development of biochemical markers in the form of isozymes and other polymorphic proteins significantly increased the number of markers which could be followed in a single segregating population (Tanksley 1983). Unfortunately, biochemical markers suffer some of the same inherent limitations as genes for morphological characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agresti A (1990) Categorical data analysis. John Wiley & Sons, New York, 558 pp

    Google Scholar 

  • Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  • Antequera F, Bird AP (1989) Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J 7:2295–2299

    Google Scholar 

  • Asins MJ, Carbonell (1988) Detection of linkage between restriction fragment length polymorphism markers and quantitative traits. Theor Appl Genet 76:623–626

    Google Scholar 

  • Atkinson AC (1987) Plots, transformations, and regression. An introduction to graphical methods of diagnostic regression analysis. Clarendon Press, Oxford, 282 pp

    Google Scholar 

  • Bailey NTJ (1961) Introduction to the mathematical theory of genetic linkage. Oxford University Press, Oxford, 298 pp

    Google Scholar 

  • Barnard GA (1967) The use of the likelihood function in statistical practice. In: Proc 5th Berkeley Symp on Math Statist and Prob, University of California Press, Berkeley

    Google Scholar 

  • Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. The MIT Press, Cambridge, 557 pp

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    PubMed  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL, Pineda O, Tanksley SD (1994) QTL analysis of trichome-mediated insect resistance in potato. Theor Appl Genet 87:973–987

    PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bradshaw JE (1994) Theory for locating quantitative trait loci. In: Bradshaw JE, Mackay GE (eds) Potato genetics, CAB International, Wallingford, pp 101–107

    Google Scholar 

  • Breslow NE, Day NE (1980) Statistical methods in cancer research, Vol I. The analysis of case-control studies. IARC, Lyon, 338 pp

    Google Scholar 

  • Brzustowicz LM, Mérette C, Xie X, Townsend L, Gilliam TC, Ott J (1993) Molecular and statistical approaches to the detection and correction of errors in genotype databases. Am J Hum Genet 53:1137–1145

    PubMed  CAS  Google Scholar 

  • Buetow KH, Chakravarti A (1987) Multipoint gene mapping using sedation. I. General methods. Am J Hum Genet 41:180–188

    PubMed  CAS  Google Scholar 

  • Buetow KH (1991) Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet 49:985–994

    PubMed  CAS  Google Scholar 

  • Burr B, Burr FA (1991) Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60

    PubMed  CAS  Google Scholar 

  • Burt A, Bell G, Harvey PH (1991) Sex difference in recombination. J Evol Biol 4:259–277

    Google Scholar 

  • Chasalow SD (1994) Mixture models for mapping QTL without inbred lines. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: Applications of molecular markers. Proc 9th Meet of the Eucarpia section, Biometrics in plant breeding, 6–8 July 1994, Wageningen, The Netherlands

    Google Scholar 

  • Chotai J (1984) On the LOD score method in linkage analysis. Ann Hum Genet 48:359–378

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cottingham RW, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–263

    PubMed  Google Scholar 

  • Cowen NM (1989) Multiple linear regression analysis of RFLP data sets used in mapping QTLs. In: Helentjaris T, Burr B (eds) Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 113–116

    Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weiler JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed  CAS  Google Scholar 

  • DeGroot MH (1975) Probability and statistics. Addison-Wesley, Reading, 607 PP

    Google Scholar 

  • De Vincente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Echt C, Knapp S, Liu B-H (1992) Genome mapping with non-inbred crosses using GMendel 2.0. Maize Genet Coop Newslett 66:27–29

    Google Scholar 

  • Edwards AWF (1988) Lod score or log-likelihood. Nature 333:308

    PubMed  CAS  Google Scholar 

  • Edwards MD, Helentjaris T, Wright S, Stuber CW (1992) Molecular-marker-facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet 83:765–774

    PubMed  CAS  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed  CAS  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London

    Google Scholar 

  • Eldredge L, Ballard R, Baird WV, Abbott A, Morgens P, Callahan A, Scorza R, Monet R (1992) Application of RFLP analysis to genetic linkage mapping in peaches. HortScience 27:160–163

    CAS  Google Scholar 

  • Ellis THN, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney, Davies DR (1992) Linkage maps in pea. Genetics 130:649–663

    PubMed  CAS  Google Scholar 

  • Emerson RA, Beadle GW, Fraser AC (1935) A summary of linkage studies in maize. Cornell Univ Agric Exp Stn Mem 180

    Google Scholar 

  • Ewing EE, Struik PC (1992) Tuber formation in potato: induction, nidation, and growth. Hortic Rev 14:89–198

    Google Scholar 

  • Fatokun CA, Menacio-Hautea DI, Danesch D, Yound ND (1992) Evidence for orthologous seed weight genes in cow pea and mung bean based on RFLP mapping. Genetics 132:841–846

    PubMed  CAS  Google Scholar 

  • Garcia-Dorado A, Gallego A (1992) On the use of the classical tests for detecting linkage. J Hered 83:143–146

    PubMed  CAS  Google Scholar 

  • Garvey TC, Hewitt JD (1992) Use of molecular markers to locate quantitative trait loci linked to high soluble solids content in a hybrid of Lycopersicon cheesmanii. J Am Soc Hortic Sci 117:497–499

    CAS  Google Scholar 

  • Gebhardt C, Salamini F (1992) Restriction fragment length polymorphism analysis of plant genomes and its application to plant breeding. Int Rev Cytol 135:201–237

    CAS  Google Scholar 

  • Gebhardt C, Ritter E, Debener T, Schachtschnabel U, Walkemeier B, Uhrig H, Salamini F (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75

    Google Scholar 

  • Gerber S, Rodolphe F (1994) Estimation and test for linkage between markers: a comparison of lod scores and χ 2 test in a linkage study of maritime pine (Pinus pinaster Ait.). Theor Appl Genet 88:293–297

    PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    PubMed  CAS  Google Scholar 

  • Görg R, Schachtschnabel U, Ritter E, Salamini F, Gebhardt C (1992) Discrimination among 136 tetraploid potato varieties by fingerprints using highly polymorphic DNA markers. Crop Sci 32:815–819

    Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testeross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Grodzicker T, Williams J, Sharps P, Sambrook J (1974) Physical mapping of temperature-sensitive mutations of adenovirus. Cold Spring Harbor Symp Quant Biol 39:439–446

    Google Scholar 

  • Guries RP, Friedman ST, Ledig FT (1978) A megagametophyte analysis of genetic linkage in pitch pine (Pinus rigida Mill.) Heredity 40:309–314

    Google Scholar 

  • Hackett CA (1994) Selection of markers linked to quantitative trait loci by regression techniques. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proc 9th Meet of the Eucarpia section, Biometrics in plant breeding, 6–8 July 1994, Wageningen, The Netherlands

    Google Scholar 

  • Hackett CA, Weller JI (1995) Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51:1252–1263

    PubMed  CAS  Google Scholar 

  • Hackett CA, Ellis RP, Foster BP, McNicol JW, Macaulay M (1992) Statistical analysis of a linkage experiment in barley involving quantitative trait loci for height and ear-emergence time and two genetic markers on chromosome 4. Theor Appl Genet 85:120–126

    PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Google Scholar 

  • Haldane JBS, Smith CAB (1947) A new estimate for the linkage between the genes for color-blindness and haemophilia in man. Ann Eugen 14:10–31

    PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA, Elsen J-M (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    PubMed  CAS  Google Scholar 

  • Heun M, Gregorius H-R (1987) A theoretical model for estimating linkage in F2 populations with distorted single gene segregation. Biom J 29:397–406

    Google Scholar 

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Proc Natl Acad Sci USA 88:3691–3695

    Google Scholar 

  • Ishii T, Terachi T, Mori N, Tsunewaki K (1993) Comparative study on the chloroplast, mitochondral and nuclear genome differentiation in two cultivated rice species, Oryza sativa and O. glaberrima, by RFLP analyses. Theor Appl Genet 86:88–96

    PubMed  CAS  Google Scholar 

  • Jansen RC (1992) A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet 85:252–260

    PubMed  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jansen RC (1994) Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871–881

    PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Jansen RC (1996a) A general monte carlo method for mapping multiple quantitative trait loci. Genetics 142:305–311

    PubMed  CAS  Google Scholar 

  • Jansen RC (1996b) Complex plant traits: time for polygenic analysis. Trends in Plant Science 1:89–94

    Google Scholar 

  • Jensen J, Jørgensen JH (1975) The barley chromosome 5 linkage map. I. Literature survey and map estimation procedure. Hereditas 80:5–16

    Google Scholar 

  • Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Kammerer CM, MacCluer JW (1988) Empirical power of three preliminary methods for ordering loci. Am J Hum Genet 43:964–970

    PubMed  CAS  Google Scholar 

  • Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent to human β-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci USA 75:724–732

    Google Scholar 

  • Karaman Z (1994) Towards an automated interpretation of gel electrophoresis. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proc 9th Meet of the Eucarpia section, Biometrics in plant breeding, 6–8 July 1994, Wageningen, The Netherlands

    Google Scholar 

  • Kendall M, Stuart A (1979) The advanced theory of statistics, vol II. Inference and relationship, 4th edn. Charles Griffin, London, 748 pp

    Google Scholar 

  • Knapp SJ (1991) Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred, and doubled haploid progeny. Theor Appl Genet 81:333–338

    PubMed  CAS  Google Scholar 

  • Knott SA, Haley CS (1992) Aspects of maximum likelihood methods for the mapping of quantitative trait loci. Genet Res Camb 60:139–151

    Google Scholar 

  • Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140:1137–1147

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kreike CM, Kok-Westeneng AA, Vinke JH, Stiekema WJ (1996) Mapping of QTLs involved in nematode resistance, tuber yield and root development in Solanum sp. Theor Appl Genet 92:463–470

    PubMed  CAS  Google Scholar 

  • Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    PubMed  CAS  Google Scholar 

  • Lalouel JM (1977) Linkage mapping from pair-wise recombination data. Heredity 38:61–77

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    PubMed  CAS  Google Scholar 

  • Lehmann EL (1975) Nonparametrics. Statistical methods based on ranks. Holden-Day, Oakland, and McGraw-Hill, New York, 457 pp

    Google Scholar 

  • Leonard-Schippers C, Gieffers W, Schäfer-Pregl R, Ritter E, Knapp SJ, Salamini F, Gebhardt C (1994) Quantitative resistance to Phytophtora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77

    Google Scholar 

  • Letovsky S, Berlyn MB (1992) Cprop — a rule-based program for constructing genetic maps. Genomics 12:435–446

    PubMed  CAS  Google Scholar 

  • Liberman V, Karlin S (1984) Theoretical models of genetic map functions. Theor Pop Biol 25:331–346

    CAS  Google Scholar 

  • Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610

    PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993a) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. Whitehead Institute for Biomedical Research Technical Report, 3rd edn Cambridge, Massachusetts

    Google Scholar 

  • Lincoln SE, Daly M J, Lander ES (1993b) Mapping genes controlling quantitative traits with MAPMAKER/QTL Version 1.1: a tutorial and reference manual. Whitehead Institute for Biomedical Research Technical Report 2nd edn. Cambridge, Massachusetts

    Google Scholar 

  • Lorieux M, Goffinet B, Perrier X, González de León D, Lanaud C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80

    PubMed  CAS  Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanaud C, Gonzalez de Leon D (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89

    PubMed  CAS  Google Scholar 

  • Luckenbach C, Luckenbach A, Ritter H (1994) Restriction fragment length polymorphism: molecular weight analysis and calculation with a scanner-based computer system. Electrophoresis 15:149–152

    PubMed  CAS  Google Scholar 

  • Luo ZW, Kearsey MJ (1992) Interval mapping of quantitative trait loci in an F2 population. Heredity 69:236–242

    Google Scholar 

  • MacArthur JW (1934) Linkage groups in tomato. J Genet 29:123–133

    Google Scholar 

  • MacLean CJ, Morton NE, Lew R (1985) Efficiency of LOD scores for representing multiple locus linkage data. Genet Epidemiol 2:145–154

    PubMed  CAS  Google Scholar 

  • Maliepaard C, Van Ooijen JW (1994) QTL mapping in a full-sib family of an outcrossing species. In: Biometrics in plant breeding. Proc 9th Meet of the Eucarpia section, Biometrics in plant breeding, 6–8 July 1994, Wageningen, The Netherlands

    Google Scholar 

  • Mangin B, Gofiinet B, Rebaï A (1994) Constructing confidence intervals for QTL location. Genetics 138:1301–1308

    PubMed  CAS  Google Scholar 

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Manly KF, Elliott RW (1991) RI Manager, a microcomputer program for analysis of data from recombinant inbred strains. Mamm Genome 1:123–126

    PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    PubMed  CAS  Google Scholar 

  • Martinez O, Curnow RN (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet 85:480–488

    PubMed  CAS  Google Scholar 

  • Mather K (1938) The measurement of linkage in heredity. Methuen, London, 132 pp

    Google Scholar 

  • Mather K (1946) Statistical analysis in biology. Methuen, London, 267 pp

    Google Scholar 

  • McCouch SR, Kodiert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    CAS  Google Scholar 

  • McCullagh P, Neider JA (1989) Monographs on statistics and applied probability 37. Generalized linear models, 2nd edn. Chapman and Hall, London, 511 pp

    Google Scholar 

  • McLachlan GJ, Basford KE (1987) Mixture models. Inference and applications to clustering. Marcel Dekker, New York, 253 pp

    Google Scholar 

  • Michelmore RW, Para I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  CAS  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    PubMed  CAS  Google Scholar 

  • Miller RG (1966) Simultaneous statistical inference. McGraw-Hill, New York, 272 pp

    Google Scholar 

  • Moreno-Gonzalez J (1992) Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor Appl Genet 85:435–444

    PubMed  CAS  Google Scholar 

  • Morris C (1992) Academic Press dictionary of science and technology. Academic Press, San Diego

    Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    PubMed  CAS  Google Scholar 

  • Morton NE (1988a) Lod score Redivivus. Nature 334:477–478

    PubMed  CAS  Google Scholar 

  • Morton NE (1988b) Multipoint mapping and the emperor’s clothes. Ann Hum Genet 52:309–318

    PubMed  CAS  Google Scholar 

  • Morton NE, Andrews V (1989) MAP, an expert system for multiple pairwise linkage analysis. Ann Hum Genet 53:263–269

    PubMed  CAS  Google Scholar 

  • Morton NE, MacLean CJ, Lew R, Yee S (1986) Multipoint linkage analysis. Am J Hum Genet 38:868–883

    PubMed  CAS  Google Scholar 

  • O’Brien SJ (ed) (1993) Genetic maps. Locus maps of complex genomes, 6th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Olson JM, Boehnke M (1990) Monte Carlo comparison of preliminary methods for ordering multiple genetic loci. Am J Hum Genet 47:470–482

    PubMed  CAS  Google Scholar 

  • Ott J (1991) Analysis of human genetic linkage, rev edn. Johns Hopkins University Press, Baltimore, 302 pp

    Google Scholar 

  • Owen ARG (1950) The theory of genetical recombination. Adv Genet 3:117–157

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Pineda O, Bonierbale MW, Plaisted RL, Brodie BB, Tanksley SD (1992) Identification of RFLP markers linked to the HI gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Genome 36:152–156

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C. The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Rebaï A, Goffinet B, Mangin B (1994) Approximate thresholds of interval mapping tests for QTL detection. Genetics 138:235–340

    PubMed  Google Scholar 

  • Rick CM (1980) Linkage report: tomato linkage survey. Rep Tomato Genet Coop 30:1–17

    Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654

    PubMed  CAS  Google Scholar 

  • Rodolphe F, Lefort M (1993) A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics 134:1277–1288

    PubMed  CAS  Google Scholar 

  • Rogatko A, Zacks S (1993) Ordering genes: controlling the decision-error probabilities. Am J Hum Genet 52:947–957

    PubMed  CAS  Google Scholar 

  • Rohrer GA, Behrens DW, Keele JW (1994) A simplified procedure for entry of raw genotypic data. J Comp Biol 1:111–119

    CAS  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    PubMed  CAS  Google Scholar 

  • Ronin YI, Kirzhner VM, Korol AB (1995) Linkage between loci of quantitative traits and marker loci: multi-trait analysis with a single marker. Theor Appl Genet 90:776–786

    PubMed  CAS  Google Scholar 

  • Säll T, Nilsson N-O (1994) The robustness of recombination frequency estimates in intercrosses with dominant markers. Genetics 137:589–596

    PubMed  Google Scholar 

  • Schaffer AA, Gupta SK, Shriram K, Cottingham RW (1994) Avoiding recomputation in linkage analysis. Hum Hered 44:225–237

    PubMed  CAS  Google Scholar 

  • Scheffé H (1959) The analysis of variance. John Wiley & Sons, New York, 477 pp

    Google Scholar 

  • Shields DC, Collins A, Buetow KH, Morton NE (1991) Error filtration, interference, and the human linkage map. Proc Natl Acad Sci USA 88:6501–6505

    PubMed  CAS  Google Scholar 

  • Shoemaker J, Zaitlin D, Horn J, DeMars S, Kirschman J, Pitas J (1992) A comparison of three Agrigenetics maize RFLP linkage maps. Maize Genet Coop Newslett 66:65–68

    Google Scholar 

  • Smith CAB (1986) Chi-squared tests with small numbers. Ann Hum Genet 50:163–167

    PubMed  CAS  Google Scholar 

  • Soller M, Brody T, Genizi A (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39

    Google Scholar 

  • Speed TP, McPeek MS, Evans SN (1992) Robustness of the no-interference model for ordering genetic markers. Proc Natl Acad Sci USA 89:3103–3106

    PubMed  CAS  Google Scholar 

  • Stam P (1991) Some aspects of QTL analysis. In: Pesek J, Hartmann J (eds) Biometrics in plant breeding. Proc 8th Meet of the Eucarpia section, Biometrics in plant breeding, 1–6 July 1991, Brno, Czechoslovakia

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Suiter KA, Wendel JF, Case JS (1983) LINKAGE-1: a Pascal computer program for the detection and analysis of genetic linkage. J Hered 74:203–204

    PubMed  CAS  Google Scholar 

  • Suzuki DT, Griffiths AJF, Lewontin RC (1981) An introduction to genetic analysis, 2nd edn. WH Freeman, San Francisco, 911 pp

    Google Scholar 

  • Tanksley SD (1983) Gene mapping. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, Part 1A. Elsevier, Amsterdam, pp 109–138

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Hewitt J (1988) Use of molecular markers in breeding for soluble solids content in tomato — a re-examination. Theor Appl Genet 75:811–823

    CAS  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988a) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Miller J, Paterson A, Bernatzky R (1988b) Molecular mapping of plant chromosomes. In: Gustafson JP, Appels R (eds) Chromosome structure and function. Plenum press, New York, pp 157–173

    Google Scholar 

  • Thompson JN, Thoday JM (1974) A definition and standard nomenclature for “polygenic loci”. Heredity 33:430–437

    PubMed  Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. John Wiley & Sons, Chichester, 243 pp

    Google Scholar 

  • Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Bio/Technology 10:686–690

    PubMed  CAS  Google Scholar 

  • Van den Berg JH (1993) Identification of chromosomal segments and gibberellins affecting potato (Solanum tuberosum L.) development. PhD Diss, Cornell University, Ithaca, 250 pp.

    Google Scholar 

  • Van den Berg JH, Bonierbale MW, Ewing EE, Plaisted RL, Tanksley SD (1993) Use of RFLP-linkage to study genetics and physiology of potato tuberization. Proc 12th triennial Conf EAPR, Paris, pp 278–279

    Google Scholar 

  • Van den Berg JH, Ewing EE, Plaisted RL, McMurry S, Bonierbale MW (1996a) QTL analysis of potato tuber dormancy. Theor Appl Genet (in press)

    Google Scholar 

  • Van den Berg JH, Ewing EE, Plaisted RL, McMurry S, Bonierbale MW (1996b) QTL analysis of potato tuberization. Theor Appl Genet (in press)

    Google Scholar 

  • Van Ecke HJ, Jacobs JME, Stam P, Ton J, Stiekema WJ, Jacobsen E (1994) Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 137:303–309

    Google Scholar 

  • Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    PubMed  Google Scholar 

  • Van Ooijen JW (1994) Comparison of a single-QTL model with an approximate multiple-QTL model for QTL mapping. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proc 9th Meet of the Eucarpia section, Biometrics in plant breeding, 6–8 July 1994, Wageningen, The Netherlands

    Google Scholar 

  • Van Ooijen JW, Maliepaard C (1996) MapQTL (tm) version 3.0: Software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen

    Google Scholar 

  • Waugh R, Van de Ven WTG, Phillips MS, Powell W (1990) Chloroplast DNA diversity in the genus Ruhus (Rosaceae) revealed by Southern hybridization. Plant Syst Evol 172:65–75

    CAS  Google Scholar 

  • Weeks DE, Lange K (1987) Preliminary ranking procedures for multilocus ordering. Genomics 1:236–242

    PubMed  CAS  Google Scholar 

  • Weller JI (1986) Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42:627–640

    PubMed  CAS  Google Scholar 

  • Weller JI (1992) Statistical methodologies for mapping and analysis of quantitative trait loci. In: Beckmann JS, Osborn TC (eds) Plant genomcs: methods for genetic and physical mapping. Kluwer, Dordrecht, pp 181–207

    Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    PubMed  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    PubMed  CAS  Google Scholar 

  • Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585

    PubMed  CAS  Google Scholar 

  • Zeng Z-B (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972 – 10976

    Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Berg, J.H., Chasalow, S.D., Waugh, R. (1997). RFLP Mapping of Plant Nuclear Genomes: Planning of Experiments, Linkage Map Construction, and QTL Mapping. In: Clark, M.S. (eds) Plant Molecular Biology — A Laboratory Manual. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87873-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87873-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49144-3

  • Online ISBN: 978-3-642-87873-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics