Skip to main content

Cloning from Genomic DNA and Production of Libraries

  • Chapter
Plant Molecular Biology — A Laboratory Manual

Part of the book series: Springer ((SLM))

  • 1149 Accesses

Abstract

Polymerase Chain Reaction (PCR) is an in vitro method of nucleic acid synthesis by which a particular segment of DNA can be specifically replicated. The technique is an ingenious tool for molecular biology that has had more impact on research than the discovery of restriction enzymes and Southern blotting. Since the unveiling of the method by Kary Mullis and colleagues (Saiki et al. 1985, 1988), numerous modifications, improvements and novel applications of PCR have been devised; since then more than 1000 publications involving the use of this method have appeared in the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker H, Webster KD, Reavy B (1993) Detection of a potato virus Y in potato tubers: a comparison of polymerase chain reaction and enzyme-linked immunosorbent assay. Potato Res 36:13–20

    CAS  Google Scholar 

  • Barnes WM (1994) PCR amplification of up to 35-Kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc Natl Acad Sci USA 91:2216–2220

    PubMed  CAS  Google Scholar 

  • Bej AK (1991) Amplification of nucleic acids by polymerase chain reaction (PCR) and other methods and their applications. Crit Rev Biochem Mol Biol 26:301–334

    PubMed  CAS  Google Scholar 

  • Bennett BL, Molenaar AJ (1994) Cloning of PCR products can be inhibited by Taq polymerase carryover. BioTechniques 16:32–33

    PubMed  CAS  Google Scholar 

  • Blake NK, Ditterline RL, Stout RG (1991) Polymerase chain reaction used for monitoring multiple gene integration in Agrobacterium-mediated transformation. Crop Sci 31:1686–1688

    CAS  Google Scholar 

  • Chee PP, Slighton JL (1992) Transformation of cucumber tissues by micro-projectile bombardment: identification of plants containing functional and non-functional transferred genes. Gene 118:255–260

    PubMed  CAS  Google Scholar 

  • Clarke JM (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 16:9677–9686

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19

    CAS  Google Scholar 

  • Eckert KA, Kunkel TA (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res 18:3739–3744

    PubMed  CAS  Google Scholar 

  • Garzón-Tiznado JA, Torres-Pacheco I, Asencio-Ibauez JT, Herrera-Estrella L, Rivera-Bustamante RF (1993) Inoculation of peppers with infectious clones of a geminivirus by a biolistic procedure. Phytopathology 83:514–521

    Google Scholar 

  • Gould SJ, Subramani S, Scheffler IE (1989) Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc Natl Acad Sci USA 86:1934–1938

    PubMed  CAS  Google Scholar 

  • Goyenechea B, Moran R, Gutierrez C, De La Riva G, Perez S (1991) Screening of transgenic plants by PCR. Biotecnol Apl 8:237–241

    CAS  Google Scholar 

  • Hadidi A, Montasser MS, Levy L, Converse RH, Madkour MA, Skrzeckowski LJ (1993) Detection of potato leafroll and strawberry mild yellow-edge luteo-viruses by reverse transcription-polymerase chain reaction amplification. Plant Dis 77:595–601

    CAS  Google Scholar 

  • Hataya T, Inoue KA, Shikata E (1994) A PCR-microplate hybridization method for plant virus detection. J Virol Methods 46:223–236

    PubMed  CAS  Google Scholar 

  • Jefferson RA (1988) Plant reporter genes: the GUS gene fusion system. Genet Eng 10:247–263

    CAS  Google Scholar 

  • Johanson A, Jeger M J (1993) Use of PCR for detection of Mycosphaerella fijiensis and Micosphaerella musicola, the causal agents of Sigatoka leaf spots in banana and plantain. Mycol Res 97:670–674

    Google Scholar 

  • Khan IM, Zammit PS, Green M, Buluwela L (1994) A simple ligation step improves the efficiency of T-overhang vectors. Trends Genet 10:225–226

    PubMed  CAS  Google Scholar 

  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JDG (1993) Alkali treatment for rapid preparation of plant material for releable PCR analysis. Plant J 3:493–494

    PubMed  CAS  Google Scholar 

  • Langeveld SA (1991) Identification of a potyviruses using the PCR with degenerate primers. J Gen Virol 72:1531–1541

    PubMed  CAS  Google Scholar 

  • López-Moya JJ, Cubero J, López-Abella D, D’íaz-Ru’íz J-R (1992) Detection of cauliflower mosaic virus (CaMV) in a single aphids by the polymerase chain reaction (PCR). J Virol Methods 37:129–137

    PubMed  Google Scholar 

  • Marchuk D, Drumm M, Saulino A, Collins FS (1990) Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19:1154

    Google Scholar 

  • Namba S, Kato S, Iwanami S, Oyaizu H, Shiozawa H, Tsuchizaky T (1993) Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Phytopathology 83:786–791

    CAS  Google Scholar 

  • Navot N, Zeidan M, Pichersky E, Zamir D, Czosnek H (1992) Use of polymerase chain reaction to amplify Tomato Yellow Leaf Curl Virus DNA from infected plants and viruliferous whiteflies. Phytopathology 82:1199–1202

    CAS  Google Scholar 

  • Prosen D, Hatziloukas E, Schaad NW, Panopoulos NJ (1993) Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Mol Plant Pathol 83:965–970

    CAS  Google Scholar 

  • Rojas MR, Gilberston RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–347

    CAS  Google Scholar 

  • Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 18:6409–6412

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    PubMed  CAS  Google Scholar 

  • Saiki R, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350

    PubMed  CAS  Google Scholar 

  • Tindall KR, Kunkel TTA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013

    PubMed  CAS  Google Scholar 

  • Vega FE, Davis RE, Barbosa P, Dally EL, Purcell AH, Lee IM (1993) Detection of a plant pathogen in a nonvector insect species by the polymerase chain reaction. Phytopathology 83:621–624

    CAS  Google Scholar 

  • Wang H, Qi M, Cutler AJ (1993) A simple method of preparing plant samples for PCR. Nucleic Acids Res 21:4153–4154

    PubMed  CAS  Google Scholar 

  • Zhu J, Kempenaers W, Van der Straten D, Contreras R, Fiers W (1985) A method for fast and pure DNA elution from agarose gels by centrifugal filtration. Bio J Technology 3:1014–1016

    CAS  Google Scholar 

  • Birmboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterisation of new cloning vehicles II a multipurpose cloning system. Gene 2:95–113

    PubMed  CAS  Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Lui CJ, Gale MD (1992) RFLP-based genetic map of the homologous group 3 chromosomes of wheat and rye. Theoret Appl Genet 83:931–939

    CAS  Google Scholar 

  • Flavell RB (1980) The molecular characterisation and organisation of repetitive plant chromosomal DNA sequences. Annu Rev Plant Physiol 31:569–596

    CAS  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    PubMed  CAS  Google Scholar 

  • Goffreda JC, Burnquist WB, Beer SC, Tanksley SD, Sorrells ME (1992) Application of molecular markers to assess genetic relationships among accessions of wild oat Avena sterilis. Theoret Appl Genet 85:146–151

    CAS  Google Scholar 

  • Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965

    PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    PubMed  CAS  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77:395–401

    CAS  Google Scholar 

  • Hugros G, Monte JV, Ferrer E (1990) Hordeum chilense repetitive sequences. Genome characterisation using biotinylated probes. Theor Appl Genet 80:24–32

    Google Scholar 

  • Imamura J, Saul MW, Potrykus I (1987) X-ray irradiation-promoted asymmetric somatic hybridization and molecular analysis of the products. Theor Appl Genet 74:445–450

    CAS  Google Scholar 

  • Itoh K, Iwabuchi M, Shimamoto K (1991) In situ hybridization with species-specfic DNA probe gives evidence for asymmetric nature of Brassica hybrids obtained by X-ray fusion. Theor Appl Genet 81:356–362

    PubMed  CAS  Google Scholar 

  • Iwabuchi M, Itoh K, Shimamoto K (1991) Molecular and cytological characterisation of repetitive DNA sequences in Brassica. Theor Appl Genet 81:349–355

    PubMed  CAS  Google Scholar 

  • Keim P, Beavis W, Schupp J, Freestone R (1992) Evaluation of soybean RFLP marker diversity in adapted germplasm. Theor Appl Genet 85:205–212

    PubMed  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kundrna D, Bollinger J, Knapp SJ, Lui B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    PubMed  CAS  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    PubMed  CAS  Google Scholar 

  • Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1994) The DNA of Arabidopsis thaliana. Mol Gen Genet 194:15–23

    Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    CAS  Google Scholar 

  • Nodari RO, Koinange EMK, Kelly JD, Gepts P (1992) Towards an integrated linkage map of common bean. I. Development of genomic DNA probes and levels of restriction fragment length polymorphism. Theo Appl Genet 84:186–192

    CAS  Google Scholar 

  • Pehu E, Thomas M, Poutala T, Karp A, Jones MGK (1990) Species-specific sequences in the genus Solanum: identification, characterisation, and application to study somatic hybrids of S. brevidens and S. tuberosum. Theor Appl Genet 80:693–698

    PubMed  CAS  Google Scholar 

  • Saul M, Potrykus I (1984) Species-specific repetitive DNA used to identify interspecific somatic hybrids. Plant Cell Rep 3:65–67

    CAS  Google Scholar 

  • Schmidt T, Junghans H, Metzlaff M (1990) Construction of Beta procumbens-specific DNA probes and their application for the screening of B. vulgaris x B. procumbens (2n = 19) addition lines. Theor Appl Genet 79:177–181

    CAS  Google Scholar 

  • Schweizer G, Borisjuk N, Borisjuk L, Stadler M, Stelzer T, Schilde L, Hemleben V (1993) Molecular analysis of highly repetitive genome fractions in Solanum and their use as markers for the characterisation of species and cultivars. Theor Appl Genet 85:801–808

    PubMed  CAS  Google Scholar 

  • Schweizer G, Ganal M, Ninnemann H, Hemleben V (1988) Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon es esculentum and Solanum acaule. Theor Appl Genet 75:679–684

    CAS  Google Scholar 

  • Solano R, Heuros G, Fominaya A, Ferrer E (1992) Organisation of repeated sequences in species of the genus Avena. Theor Appl Genet 83:602–607

    PubMed  CAS  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1 Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794

    CAS  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Miller J, Paterson A, Bernatzky R (1988) Molecular mapping of plant chromosomes. In: Gustafson JP, Appels R (eds) Chromosome Structure and Function: Impact of New Techniques. Plenum D, NY London, 157–173

    Google Scholar 

  • Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    PubMed  CAS  Google Scholar 

  • Zamir D, Tanksley SD (1988) Tomato genome is comprised largely of fast-evolving low copy number sequences. Mol Gen Genet 213:254–261

    CAS  Google Scholar 

  • Zhao X, Wu T, Xie Y, Wu R (1989) Genome-specific repetitive sequences in the genus Oryza. Theor Appl Genet 78:210–209

    Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    PubMed  CAS  Google Scholar 

  • Elgar GS, Brenner S (1992) A novel method for the isolation of large insert DNA from recombinant lambda DNA. Nucleic Acid Res 20:4667

    PubMed  CAS  Google Scholar 

  • Hendrix RW, Roberts JW, Stahl F, Weisberg RA (eds) (1983) Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Karn J, Matthes HWD, Gait MJ, Brenner S (1984) A new selective cloning vector, λ2001, with sites for BamHI, HindIII, EcoRI, SstI and Xhol. Gene 32:217–224

    PubMed  CAS  Google Scholar 

  • Nizetic D, Zehetner G, Monaco AP, Gellen L, Young BD, Lehrach H (1991) Construction, arraying, and high-density screening of large insert libraries of human chromosomes X and 21: their potential use as reference libraries. Proc Natl Acad Sci USA 88:3233–3237

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sandford RN, Elgar GS (1992) A novel method for rapid genomic walking using lambda vectors. Nucleic Acid Res 20:4665–4666

    PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Briley GP, Bidwell CA (1994) Use of agarose block DNA to make cosmid libraries. Biotechniques 17:278–280

    PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    PubMed  CAS  Google Scholar 

  • Evans GA, Lewis KA (1989) Physical mapping of complex genomes by cosmid multiplex analysis. Proc Natl Acad Sci USA 86:5030–5034

    PubMed  CAS  Google Scholar 

  • Evans GA, Lewis K, Rothenberg BE (1989) High efficiency vectors for cosmid microcloning and genomic analysis. Gene 79:9–20

    PubMed  CAS  Google Scholar 

  • Geraghty D (1985) Structure and organization of the zein multigene family. PhD Thesis, University of Minnesota, St. Paul

    Google Scholar 

  • Gold M, Becker A, Parris W (1983) The bacteriophage lambda terminase enzyme. Methods Enzymol 100:183–191

    PubMed  CAS  Google Scholar 

  • Hohn B, Collins J (1980) A small cosmid for effecient cloning of large DNA fragments. Gene 11:291–298

    PubMed  CAS  Google Scholar 

  • Kislev N, Rubenstein I (1980) Utility of ethidium bromide in the extraction from whole plants of high molecular weight maize DNA. Plant Physiol 66:1140–1143

    PubMed  CAS  Google Scholar 

  • Liu C-N, Rubenstein I (1992a) Genomic organization of an ot-zein gene cluster in maize. Mol Gen Genet 231:304–312

    PubMed  CAS  Google Scholar 

  • Liu C-N, Rubenstein I (1992b) Molecular characterization of two types of 22 kilodalton ot-zein genes in a gene cluster in maize. Mol Gen Genet 234:244–253

    PubMed  CAS  Google Scholar 

  • Liu C-N, Rubenstein I (1993) Transcriptional characterization of an ot-zein gene cluster in maize. Plant Mol Biol 22:323–336

    PubMed  CAS  Google Scholar 

  • Loening UE (1967) The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J 102:251–257

    PubMed  CAS  Google Scholar 

  • Loftus MG, Foster LM, Ross IK (1992) A rapid method for cosmid cloning. BioTechniques 12:172–175

    PubMed  CAS  Google Scholar 

  • Rackwitz H-R, Zehetner G, Frischauf A-M, Lehrach H (1984) Rapid restriction mapping of DNA cloned in lambda phage vectors. Gene 30:195–200

    PubMed  CAS  Google Scholar 

  • Rackwitz HR, Zehetner G, Murialdo H, Delius H, Chai JH, Poustka A, Frischauf A, Lehrach H (1985) Analysis of cosmids using linearization by phage lambda terminase. Gene 40:259–266

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scalenghe F, Turco E, Edström JE, Pirrotta V, Melli M (1981) Microdisection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 82:205–216

    PubMed  CAS  Google Scholar 

  • Steck TR (1994) Use of low-melt agarose for the efficient isolation of large DNA fragments. BioTechniques 17:676–678

    PubMed  CAS  Google Scholar 

  • Steinmüller K, Apel K (1986) A simple and efficient procedure for isolating plant chromatin which is suitable for studies of DNase I-sensitive domains and hypersensitive sites. Plant Mol Biol 7:87–94

    Google Scholar 

  • Sternberg N, Tiemeier D, Enquist L (1977) In vitro packaging of a λ Dam vector containing EcoRI DNA fragments of Escherichia coli and phage PI. Gene 1:255–280

    PubMed  CAS  Google Scholar 

  • ten Lohuis MR, Meyer A, Meyer P (1993) An improved method for the isolation of high molecular weight > 300 kb plant DNA in liquid phase. BioTechniques 14:890–892

    PubMed  Google Scholar 

  • Wahl GM, Lewis KA, Ruiz JC, Rothenberg B, Zhao J, Evans GA (1987) Cosmid vectors for rapid genomic walking, restriction mapping, and gene transfer. Proc Natl Acad Sci USA 84:2160–2164

    PubMed  CAS  Google Scholar 

  • Anand R (1992) Yeast artificial chromosomes (YACs) and the analysis of complex genomes. Trends Biotech 10:35–40

    CAS  Google Scholar 

  • Burgers PMJ, Percival KJ (1987) Transformation of yeast spheroplasts without cell fussion. Anal Biochem 163:391–397

    PubMed  CAS  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning a large DNA segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    PubMed  CAS  Google Scholar 

  • Bancroft I, Westphal L, Schmidt R, Dean C (1992) PFGE-resolved RFLP analysis and long-range restriction mapping of the DNA of Arabidopsis thaliana using whole YAC clones as probes. Nucleic Acids Res 20:6201–6207

    PubMed  CAS  Google Scholar 

  • Bellann-Chantelot C, Lacroix B, Ougen P, Billault A, Beaufils S, Bertrand S, Georges I, Glibert F, Gros I Lucotte G, Susini L, Codani JJ, Gesnouin P, Pook S, VaysScix G, Lu-Kuo J, Ried T, Ward D, Chumakov I, LePaslier D, Barillot E, Cohen D (1992) Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70:1059–1068

    Google Scholar 

  • Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res 12:5647–5664

    PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETRI: similarity of product to two-component regulators. Science 262:539–544

    PubMed  CAS  Google Scholar 

  • Creusot F, Sevignac M, Dron M (1992) Large-scale mapping using high-mole- cular weight DNA from P. vulgaris. Plant Mol Biol Rep 10:207–218

    CAS  Google Scholar 

  • Ecker JR (1990) PFGE and YAC analysis of the Arabidopsis genome. Methods 1:186–194

    CAS  Google Scholar 

  • Edwards KJ, Thompson H, Edwards D, de Saizieu A, Sparks C, Thompson JA, Greenland AJ, Eyers M, Schuch W (1992) Construction and characterization of a yeast artificial chromosome library containing three haploid maize genome equivalents. Plant Mol Biol 19:299–308

    PubMed  CAS  Google Scholar 

  • Elicieri B, Labella T, Hagino Y, Srivastava A, Schlessinger D, Pilia G, Palmieri G, D’Urso M (1991) Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes. Proc Natl Acad Sci USA 88:2179–2183

    Google Scholar 

  • Foote S, Vollrath D, Hilton A, Page DC (1992) The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258:60–66

    PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    PubMed  CAS  Google Scholar 

  • Ganal MW, Tanksley SD (1989) Analysis of tomato DNA by pulsed-field gel electrophoresis. Plant Mol Biol Rep 7:17–28

    CAS  Google Scholar 

  • Grill E, Somerville C (1991) Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet 226:484–490

    PubMed  CAS  Google Scholar 

  • Guzmán P, Ecker JR (1988) Development of large DNA methods for plants: molecular cloning of large DNA segments of Arabidopsis and carrot DNA into yeast. Nucleic Acids Res 16:11091–11105

    PubMed  Google Scholar 

  • Guzmán P, Ecker JR (1990) Development of large DNA methods for plants. In: Bennett A (ed) Horticultural biotechnology. Plant Biology series. AR Liss, New York, pp 95–107

    Google Scholar 

  • Green ED, Olson MV (1990) Systematic screening of yeast artificial chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci USA 87:1213–1217

    PubMed  CAS  Google Scholar 

  • Hatano S, Yamaguchi J, Hirai A (1992) The preparation of high-molecular-weight DNA from rice and its analysis by pulse-field gel electrophoresis. Plant Sci 83:55–64

    CAS  Google Scholar 

  • Hernández S, Sánchez M, Guzmán P, Simpson J (1996) Isolation of High molecular weight DNA from plant nuclei. Methods Mol Cel Biol (in press)

    Google Scholar 

  • Hwang I, Kohchi T, Hauge BM, Goodman HM, Schmidt R, Cnops G, Dean C, Gibson S, Iba K, Lemieux B, Arondel V, Danhoff L, Somerville C (1991) Identification and map position of YAC clones comprising one-third of the Arabidopsis genome. Plant J 1:367–374

    PubMed  CAS  Google Scholar 

  • Jakobovits A, Moore AL, Green LL, Vergara GJ, Maynard-Currie CE, Austin HA, Klaphloz S (1993) Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362:255–258

    PubMed  CAS  Google Scholar 

  • Larin Z, Monaco AP, Lehrach H (1991) Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc Natl Acad Sci USA 88:4123–4127

    PubMed  CAS  Google Scholar 

  • Martin GB, Ganal MW, Tanksley SD (1992) Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease-resistance loci. Mol Gen Genet 233:25–32

    PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    PubMed  CAS  Google Scholar 

  • Matallana E, Bell CJ, Dunn PJ, Lu M, Ecker JR (1992) Genetic and physical linkage of the Arabidopsis genome: methods for anchoring yeast artificial chromosomes. In: Koncz C, Chua N-H, Schell J (eds) Methods in Arabidopsis research. World Scientific, Singapore, pp 144–169

    Google Scholar 

  • McCormick M, Shero J, Chung M-C, Dan YW, Hieter P, Antonarakis S (1989) Construction of chromosome 21 specific yeast artificial chromosomes. Proc Natl Acad Sci USA 86:9991–9995

    PubMed  CAS  Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schedl A, Montoliu L, Kelsey G, Schütz G (1993) A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362:258–261

    PubMed  CAS  Google Scholar 

  • Schlessinger D (1990) Yeast artificial chromosomes: tools for mapping and analysis of complex genomes. TTG 6:248–258

    CAS  Google Scholar 

  • Schmidt R, Dean C (1992) Physical mapping of the Arabidopsis thaliana genome. In: Davies KE, Tilghman SR (eds) Genome Analysis, vol 4. Strategies for physical mapping. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 71–98

    Google Scholar 

  • Schmidt R, Dean C (1993) Towards construction of an overlapping YAC library of the Arabidopsis thaliana genome. BioEssays 15:63–69

    CAS  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed-field gradient gel electrophoresis. Cell 37:67–75

    PubMed  CAS  Google Scholar 

  • Smith DR, Smyth AP, Moir DT (1990) Amplification of large artificial chromosomes. Proc Natl Acad Sci USA 87:8242–8246

    PubMed  CAS  Google Scholar 

  • Smith DR, Smyth AP, Strauss WM, Moir DT (1993) Incorporation of copy-number control elements into yeast artificial chromosomes by targeted homologous recombination. Mamm Genome 4:141–147

    PubMed  CAS  Google Scholar 

  • Ward ER, Jen GC (1990) Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly sheared Arabidopsis thaliana DNA. Plant Mol Biol 14:561–568

    PubMed  CAS  Google Scholar 

  • Wing RA, Rastogi VK, Zhang H-B, Paterson AH, Tanksley SD (1993) An improved method of plant megabase DNA isolation in agarose microbeads suitable for physical mapping and YAC cloning. Plant J 4:893–398

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guevara-Garcia, A. et al. (1997). Cloning from Genomic DNA and Production of Libraries. In: Clark, M.S. (eds) Plant Molecular Biology — A Laboratory Manual. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87873-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87873-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49144-3

  • Online ISBN: 978-3-642-87873-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics