Advertisement

P-BR and Its Role in the Photocycle of Bacteriorhodopsin

  • T. Gillbro
  • V. Sundström
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 23)

Abstract

The initial photochemical events occuring in the chromophore (bacteriorhodopsin) of the purple membrane of Halobacterium halobium belongs to one of the most studied subjects in the literature of picosecond spectroscopy. Both fast fluorescence [1–3] and absorption recovery [4–7] has been studied. However, there is rather poor agreement between experimental data reported. In some recent flash photolysis [8] and fluorescence studies [9–10] it has been shown that there is a long-lived photoproduct of bacteriorhodopsin, called P-BR, which is formed even at 77 K. We have undertaken this study in order to investigate if some of the results given in the literature might be better understood assuming that P-BR contributes to the data reported.

Keywords

Purple Membrane Critical Flow Rate Fast Fluorescence Protonated Schiff Base Halobacterium Halobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Hirsch, M.A. Marcus, A. Lewis, H. Mahr and N. Frigo: Biophys. J. 16, 1399 (1976)CrossRefGoogle Scholar
  2. 2.
    R.R. Alfano, W. Yu, R. Govindjee, B. Becher and T. Ebrey: Biophys. J. 16, 541 (1976)CrossRefGoogle Scholar
  3. 3.
    S.L. Shapiro, A.J. Campillo, A. Lewis, G.J. Perreault, J.P. Spoonhower, R.K. Clayton and W. Stoeckenius: Biophys. J. 23, 383 (1978)CrossRefGoogle Scholar
  4. 4.
    K.J. Kaufmann, P.M. Rentzepis, W. Stoeckenius and A. Lewis: Biochem. Biophys. Res. Com. 68, 1109 (1976)CrossRefGoogle Scholar
  5. 5.
    K.J. Kaufmann, V. Sundström, T. Yamane and P.M. Rentzepis: Biophys. J. 22, 121 (1978)CrossRefGoogle Scholar
  6. 6.
    M.L. Applebury, K.S. Peters and P.M. Rentzepis: Biophys. J. 23, 375 (1978)CrossRefGoogle Scholar
  7. 7.
    E.P. Ippen, C.V. Shank, A. Lewis and M.A. Marcus: Science 200, 1281 (1978)Google Scholar
  8. 8.
    T. Gillbro: Biochim. Biophys. Acta 504, 175 (1978)CrossRefGoogle Scholar
  9. 9.
    T. Gillbro, A. N. Kriebel and U.P. Wild: FEBS Letters 74, 57 (1977)Google Scholar
  10. 10.
    A.N. Kriebel, T. Gillbro and U.P. Wild: Biochim. Biophys. Acta 546, 106 (1979)CrossRefGoogle Scholar
  11. V.Sundström and T. Gillbro: Appl. Phys. 24, 233 (1931)Google Scholar
  12. 12.
    D. Oesterhelt and W. Stoeckenius: Methods Enzymol 31 A,667 (1974) 13.T. Gillbro and V. Sundström, to be published.Google Scholar
  13. 14.
    T. Gillbro, A. Holzwarth and V. Sundström, to be published.Google Scholar
  14. 15.
    K. Nakanishi, V. Balogh-Nair, M. Arnaboldi, K. Tsujimoto and B. Honig: J. Am. Chem. Soc. 102, 7945 (1980)CrossRefGoogle Scholar
  15. 16.
    M. Tsuda, F. Tokunaga, T.G. Ebrey, T.K. Yue, J. Marque and L. Eisenstein: Nature 287, 461 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • T. Gillbro
    • 1
  • V. Sundström
    • 1
  1. 1.Division of Physical ChemistryUniversity of UmeåUmeåSweden

Personalised recommendations