Advertisement

Dynamics of Photoisomerization

  • G. R. Fleming
  • S. P. Velsko
  • D. H. Waldeck
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 23)

Abstract

There has recently been a good deal of theoretical [1–3] and experimental [4–7] interest in activated barrier crossing processes in liquids. The best known model is that of Kramers [8] who derived expressions for the escape of particles over a barrier in various limiting cases. Combining Kramers ideas with recent kinetic theory calculations [1–3] leads to the following general picture. At low friction (viscosity) the rate of barrier crossing increases with viscosity (inertial region) until it turns over and begins to decrease with increasing friction (intermediate friction). Finally at high friction values the rate decreases linearly with increasing friction (Smoluchowski limit region).

Keywords

State Isomerization Rotational Diffusion High Repetition Rate Twisted Form Rotational Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.F. Grote and J.T. Hynes, J. Chem. Phys. 74, 4465 (1981).CrossRefGoogle Scholar
  2. 2.
    J.A. Montgomery, D. Chandler and B.J. Berne, J. Chem. Phys. 70, 4056 (1979).CrossRefGoogle Scholar
  3. 3.
    J.L. Skinner and P.G. Wolynes, J. Chem. Phys. 72, 4913 (1980).CrossRefGoogle Scholar
  4. 4.
    R.M. Hochstrasser in Picosecond Phenomena II, 259 (1980).Google Scholar
  5. 5.
    C.J. Tredwell and A.D. Osborne, J. Chem. Soc. Faraday II, 76, 1627 (1980).CrossRefGoogle Scholar
  6. 6.
    S.P. Velsko and G.R. Fleming, Chem. Phys. 65, 59 (1982).CrossRefGoogle Scholar
  7. 7.
    S.P. Velsko and G.R. Fleming, J. Chem. Phys. 76, 3553 (1982).CrossRefGoogle Scholar
  8. 8.
    H.A. Kramers, Physica 7, 284 (1940).CrossRefGoogle Scholar
  9. 9.
    K.M. Keery and G.R. Fleming, in preparation.Google Scholar
  10. 10.
    S.P. Velsko, D.H. Waldeck and G.R. Fleming, submitted J. Chem. Phys.Google Scholar
  11. 11.
    I. Baraldi, et al., Chem. Phys. 52, 415 (1980).CrossRefGoogle Scholar
  12. 12.
    D.H. Waldeck and G.R. Fleming, J. Phys. Chem. 85, 2614 (1981).CrossRefGoogle Scholar
  13. 13.
    G.R. Fleming, et al., Proc. Lasers ‘81, in press.Google Scholar
  14. 14.
    D.H. Waldeck, W.T. Lotshaw, D.B. McDonald and G.R. Fleming, Chem. Phys. Lett. 88, 297 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • G. R. Fleming
    • 1
  • S. P. Velsko
    • 1
  • D. H. Waldeck
    • 1
  1. 1.Department of Chemistry and James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations