Advertisement

The Temperature Dependence of Homogeneous and Inhomogeneous Vibrational Linewidth Broadening Studies Using Coherent Picosecond Stokes Scattering

  • S. M. George
  • A. L. Harris
  • M. Berg
  • C. B. Harris
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 23)

Abstract

The theoretical interpretation of vibrational dephasing experiments has been dependent on several simplifying assumptions [1]. One important assumption has been low depletion (≤5%) of the laser pump in the stimulated Raman excitation process. We have observed that, given exponential stimulated Stokes gain and pulse intensity fluctuations from passively mode-locked Nd:glass laser systems, maintaining stimulated Stokes conversions between 1–5% is a nearly impossible task. Figure 1 shows that immediately after the stimulated Raman scattering threshold is reached, the laser can be depleted ≥10% and depletion approaches ≈50% as the laser energy increases. Other studies measuring both laser and Stokes pulses after the Raman cell reveal coincident sharp thresholds for stimulated Stokes scattering and laser depletion [2]. Consequently, we believe that most vibrational dephasing experiments [3–6] have been performed in the high Stokes conversion regime.

Keywords

Stimulate Raman Scattering Dephasing Time Raman Cell Lawrence Livermore Laboratory Homogeneous Linewidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Laubereau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).CrossRefGoogle Scholar
  2. 2.
    S.M. George, A.L. Harris, M. Berg and C.B. Harris, to be published.Google Scholar
  3. 3.
    A. Laubereau, G. Wochner and W. Kaiser, Phys. Rev. 13A, 2212 (1976).Google Scholar
  4. 4.
    A. Laubereau, G. Wochner and W. Kaiser, Chem. Phys. 28, 363 (1978).CrossRefGoogle Scholar
  5. 5.
    C.B. Harris, H. Auweter and S.M. George, Phy. Rev. Lett. 44, 737 (1980).CrossRefGoogle Scholar
  6. 6.
    S.M. George, H. Auweter and C.B. Harris, J. Chem. Phys. 73, 5573 (1980).CrossRefGoogle Scholar
  7. 7.
    G.I. Kachen, Ph.D. thesis, UCRL-51753, Lawrence Livermore Laboratory, Univ. of Calif., Livermore, CA 94550.Google Scholar
  8. 8.
    G.I. Kachen and W.H. Lowdermilk, Phys. Rev. 14A, 1472 (1976).Google Scholar
  9. 9.
    W. Zinth, H.J. Polland, A. Laubereau and W. Kaiser, Appl. Phys. B26, 77 (1981).Google Scholar
  10. 10.
    J. Yarwood, R. Ackroyd, K.E. Arnold, G. Doge and R. Arndt, Chem. Phys. Lett. 77, 239 (1981).CrossRefGoogle Scholar
  11. 11.
    D.W. Oxtoby, Adv. Chem. Phys. 40, 1 (1979).Google Scholar
  12. 12.
    K.S. Schweizer and D. Chandler, J. Chem. Phys. 76, 2296 (1982).CrossRefGoogle Scholar
  13. 13.
    D.W. Oxtoby, J. Chem. Phys. 70, 2605 (1979).CrossRefGoogle Scholar
  14. 14.
    R. Landau and A. Wurflinger, Ber. Bunsenges. Phys. Chem. 84, 895(1980). KT values calculated using the Tait equation were obtained from A. Wurflinger.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • S. M. George
    • 1
  • A. L. Harris
    • 1
  • M. Berg
    • 1
  • C. B. Harris
    • 1
  1. 1.Department of ChemistryUniversity of California and Materials and Molecular Research Division, Lawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations