Picosecond Time-Resolved Photoacoustic Spectroscopy

  • M. Bernstein
  • L. J. Rothberg
  • K. S. Peters
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 23)


In this paper we report the development and application of photoacoustic spectroscopy (PAS) for the detection and characterization of transient intermediates with lifetimes on the picosecond timescale [1].


Fluorescence Lifetime Probe Beam Probe Pulse Transient Absorption Excitation Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nanosecond transient absorption was detected photoacoustically, but without time resolution, by M. G. Rockley and J. P. Devlin, Applied Physics Letters 32, 24 (1977).Google Scholar
  2. 2.
    L. T. Netzel and P. M. Rentzepis, Chem. Phys. Lett. 29, 337 (1974).CrossRefGoogle Scholar
  3. 3.
    B. I. Greene, R. M. Hochstrasser and R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).CrossRefGoogle Scholar
  4. 4.
    M. Bernstein, L. J. Rothberg and K. S. Peters, submitted to Chem. Phys. Lett.Google Scholar
  5. 5.
    B. S. Hudson, B. E. Kohler and Klaus Schulten in Excited States vol. 5, E. C. Lim, ed., in press.Google Scholar
  6. 6.
    K. H. Drexhage in Dye Lasers, F. P. Schafer, ed., Springer-Verlag, New York, 1973.Google Scholar
  7. 7.
    C. D. Amata, et. al., J. Chem. Phys. 48, 2374 (1968). I. B. Berleman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York, 1971, p. 231.Google Scholar
  8. 8.
    S. P. Velsko and G. R. Fleming, J. Chem. Phys. 76, 3553 (1982). G. R. Fleming, personal communication. D. J. S. Birch and R. E. Imhof, Chem. Phys. Lett. 88, 243 (1982).Google Scholar
  9. Experiments with polarized pump and probe beams indicate that rotational diffusion makes only a minor contribution to the observed absorption decay rate.Google Scholar
  10. 9.
    J. R. Andrew and B. S. Hudson, J. Chem. Phys. 68, 4587 (1975).CrossRefGoogle Scholar
  11. 10.
    While the fluorescence lifetime of Coumarin 485, a dimethylamine, has not to our knowledge been reported, it would be expected to resemble that of the diethyl analog, Coumarin 151, reported by G. Jones, W. R. Jackson and A. Halpern, Chem. Phys. Lett. 72, 399 (1980).Google Scholar
  12. 11.
    J. D. Simon and K S. Peters, J. Am. Chem. Soc., in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • M. Bernstein
    • 1
  • L. J. Rothberg
    • 1
  • K. S. Peters
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations