Picosecond Studies of Temperature and Solvent Effects on the Fluorescence from Coumarin 102 and Acridine

  • S. L. Shapiro
  • K. R. Winn
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 14)


Picosecond kinetics often provides the only way of detecting and unravelling complex molecular interactions in liquids. Here we report about the kinetics of the fluorescence from two molecules using picosecond streak camera techniques. Upon excitation both coumarin 102 and acridine exhibit interesting spectral dynamical behavior depending sensitively on the temperature and solvent. For understanding energy dissipation in polyatomic molecules, the dependence of the relaxation times on emission and excitation wavelengths and upon temperature can be crucial. The behavior of the coumarin 102 emission with temperature and solvent allows us to interpret the results in terms of formation at an excited state [1,2] hydrogen bonded complex between the coumarin 102 and solvent molecules. The dependence of the fluorescence lifetime of acridine with temperature for several solvents demonstrates that an activation energy is present and that current models are inadequate.


Formation Time Streak Camera Blue Edge Normal Alcohol Alamos Scientific Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. V. Shank, A. Dienes, A. M. Trozzolo, and J. A. Myer, Appl. Phys. Letters 16, 405 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    S. L. Shapiro and K. R. Winn, Chem. Phys. Letters, to be published.Google Scholar
  3. 3.
    J. Campillo, J. H. Clark, S. L. Shapiro, K. R. Winn, and P. K. Woodbridge, Chem. Phys. Letters, 67, 218 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    K.H. Dexhage: Dye Lasers. ed. by F.P. Schäfer, Topics in Applied Physics, Vol. 1 (Springer, Berlin, Heidelberg, New York 1977) 144Google Scholar
  5. 5.
    P. Debye, Polar Molecules (Dover Publications, London, 1929) p. 84.MATHGoogle Scholar
  6. 6.
    T. J. Chuang and K. B. Elsenthal, Chem. Phys. Letters 11, 368 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    M. M. Malley and G. Mourou, Optics Communications 10, 323 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    W. S. Struve and P. M. Rentzepis, Chem. Phys. Letters 29, 23 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    H. E. Lessing and M. Reichert, Chem. Phys. Letters 46, 111 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    L. A. Hallidy and M. R. Topp, J. Phys. Chem. 82, 2415 (1978).CrossRefGoogle Scholar
  11. 11.
    V. Sundstrom, P. M. Rentzepis and E. C. Lim, J. Chem. Phys. 66, 4287Google Scholar
  12. 12.
    L. J. Noe, E O. Degenkolb, and P. M. Rentzepis, J. Chem. Phys. 68, 4435Google Scholar
  13. 13.
    H. B. Lin and M. Topp, Chem. Phys. 36, 365 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    P. F. Barbara, L. E. Brus and P. M. Rentzepis, Chem. Phys. Letters 69, 447 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    E. C. Lim, in Excited States, edited by E. C. Lim (Academic Press, New York, 1977), Vol. 3, p. 305–337.Google Scholar
  16. 16.
    R. M. Hochstrasser and C. A. Marzzacco, in Molecular Luminescence, edited by E. C. Lim (W. A. Benjamin, Inc., New York, 1969), p. 631–656.Google Scholar
  17. 17.
    J. R. Huber, M. Mahaney, and J. V. Morris, Chem. Phys. 16, 329 (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • S. L. Shapiro
    • 1
  • K. R. Winn
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations