Skip to main content

Wavelet Radiance

  • Conference paper
Photorealistic Rendering Techniques

Part of the book series: Focus on Computer Graphics ((FOCUS COMPUTER))

Abstract

In this paper, we show how wavelet analysis can be used to provide an efficient solution method for global illumination with glossy and diffuse reflections. Wavelets are used to sparsely represent radiance distribution functions and the transport operator. In contrast to previous wavelet methods (for radiosity), our algorithm transports light directly among wavelets, and eliminates the pushing and pulling procedures.

The framework we describe supports curved surfaces and spatially-varying anisotropic BRDFs. We use importance to make the global illumination problem tractable for complex scenes, and a final gathering step to improve the visual quality of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley K. Alpert. Sparse Representations of Smooth Linear Operators. PhD thesis, Yale University, 1990.

    Google Scholar 

  2. Larry Aupperle and Pat Hanrahan. A hierarchical illumination algorithm for surfaces with glossy reflection. In Proceedings of SIGGRAPH’93, pages 155–162, August 1993.

    Google Scholar 

  3. Larry Aupperle and Pat Hanrahan. Importance and discrete three point transport. In Proceedings of the Fourth Eurographics Workshop on Rendering, pages 85–94, June 1993.

    Google Scholar 

  4. G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms I. Communications on Pure and Applied Mathematics, 44: 141–183, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Beylkin, R. R. Coifman, and V. Rokhlin. Wavelets in numerical analysis. In Mary Beth Rushkai et al., editors, Wavelets and Their Applications, pages 181–210. Jones and Bartlett, 1992.

    Google Scholar 

  6. Per H. Christensen, David H. Salesin, and Tony D. DeRose. A continuous adjoint formulation for radiance transport. In Proceedings of the Fourth Eurographics Workshop on Rendering, pages 95–104, June 1993.

    Google Scholar 

  7. Per H. Christensen, Eric J. Stollnitz, David H. Salesin, and Tony D. DeRose. Importance-driven wavelet radiance. Technical Report 94-01-05, Department of Computer Science and Engineering, University of Washington, January 1994.

    Google Scholar 

  8. Charles K. Chui and Ewald Quak. Wavelets on a bounded interval. Numerical Methods of Approximation Theory, 9: 53–75, 1992.

    Article  MathSciNet  Google Scholar 

  9. A. Cohen, I. Daubechies, and J. C. Feauveau. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45: 485–500, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Academic Press Professional, Cambridge, Massachusets, 1993.

    MATH  Google Scholar 

  11. Tony D. DeRose, David H. Salesin, and Eric J. Stollnitz. Wavelets for computer graphics: A primer. In SIGGRAPH’94 Computational Representations of Geometry Course Notes, July 1994.

    Google Scholar 

  12. Reid Gershbein, Peter Schroder, and Pat Hanrahan. Textures and radiosity: Controlling emission and reflection with texture maps. In Proceedings of SIGGRAPH’94, Pages 51–58, July 1994.

    Google Scholar 

  13. Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Modeling the interaction of light between diffuse surfaces. In Proceedings of SIGGRAPH’84, pages 213–222, July 1984.

    Google Scholar 

  14. Steven J. Gortler, Peter Schroder, Micheal F. Cohen, and Pat Hanrahan. Wavelet radiosity. In Proceedings of SIGGRAPH’93, pages 221–230, August 1993.

    Google Scholar 

  15. Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algorithm. In Proceedings of SIGGRAPH’91, pages 197–206, July 1991.

    Google Scholar 

  16. David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for non-diffuse environments. In Proceedings of SIGGRAPH’86, pages 133–142, August 1986.

    Google Scholar 

  17. Stephane Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, ll(7):674’693, July 1989.

    Google Scholar 

  18. Sumanta N. Pattanaik. Computational Methods for Global Illumination and Visualisation of Complex 3D Environments. PhD thesis, Birla Institute of Technology and Science, 1993.

    Google Scholar 

  19. Mark C. Reichert. A two-pass radiosity method driven by lights and viewer position. Master’s thesis, Program of Computer Graphics, Cornell University, Ithaca, New York, January 1992.

    Google Scholar 

  20. Peter Schroder, Steven J. Gortler, Micheal F. Cohen, and Pat Hanrahan. Wavelet projections for radiosity. In Proceedings of the Fourth Eurographics Workshop on Rendering, pages 95–104, June 1993.

    Google Scholar 

  21. Min-Zhi Shao, Qun-Sheng Peng, and You-Dong Liang. A new radiosity approach by procedural refinements for realistic image synthesis. In Proceedings of SIG- GRAPH’88, pages 93–102, August 1988.

    Google Scholar 

  22. François X. S illion, James R. Arvo, Stephen H. Westin, and Donald P. Greenberg. A global illumination solution for general reflectance distributions. In Proceedings of SIGGRAPH’91, pages 187–196, July 1991.

    Google Scholar 

  23. Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-driven radiosity algorithm. In Proceedings of SIGGRAPH’92, pages 273–282, July 1992.

    Google Scholar 

  24. Roy Troutman and Nelson L. Max. Radiosity algorithms using higher order finite elements. In Proceedings of SIGGRAPH’93, pages 209–212, August 1993.

    Google Scholar 

  25. Gregory J. Ward. Measuring and modeling anisotropic reflection. In Proceedings of SIGGRAPH’92, pages 265–273, July 1992.

    Google Scholar 

  26. Harold R. Zatz. Galerkin radiosity. In Proceedings of SIGGRAPH’93, pages 213–220, August 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 EUROGRAPHICS The European Association for Computer Graphics

About this paper

Cite this paper

Christensen, P., Stollnitz, E., Salesin, D., DeRose, T. (1995). Wavelet Radiance. In: Sakas, G., Müller, S., Shirley, P. (eds) Photorealistic Rendering Techniques. Focus on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87825-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87825-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87827-5

  • Online ISBN: 978-3-642-87825-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics