Skip to main content

Aspects of Predicting Gross Photosynthesis (Net Photosynthesis Plus Light and Dark Respiration) for an Energy-Metabolic Balance in the Plant

  • Chapter
Perspectives of Biophysical Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 12))

  • 439 Accesses

Abstract

An important goal of most photosynthetic models is to predict photosynthetic energy available for plant metabolism. Earlier workers studying quantum efficiency of conversion of light to photosynthetic energy encountered considerable philosophical and experimental difficulties, which have not yet been resolved (Rabinowitch, 1945; Kok, 1972). Oxygen or carbon dioxide exchange of intact organs is typically used as a measure of photosynthetic production of energy. However, difficulties are created by consumption or generation of oxygen, carbon dioxide, and energy by nonphotosynthetic metabolism within a plant organ. Experimentally, the assumption is and has been that light respiration is equivalent to the dark respiration of a photosynthetic system shortly after the light has been shut off. The frustrating question for many years has been: Is light respiration different from dark respiration of previously irradiated plant organs ?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. S., Strain, B. R.: 1969. Seasonal photosynthetic rates in stems of Cercidium floridum Benth. Photosynthetica 3, 55–62.

    CAS  Google Scholar 

  • Adams, M. S., Strain, B. R., Strain, B. R., Ting, I. P.: 1967. Photosynthesis in chlorophyllous stem tissue and leaves of Cercidium floridum: Accumulation and distribution of 14C from 14CO2. Plant Physiol. 42, 1797–1799.

    Article  PubMed  CAS  Google Scholar 

  • Arnon, D. I.: 1971. The light reactions of photosynthesis. Proc. Natl. Acad. Sci. 68, 2883–2892.

    Article  PubMed  CAS  Google Scholar 

  • Beevers, L., Hageman, R. H.: 1972. The role of light in nitrate metabolism. In Photophysiology: current topics in photobiology and photochemistry (ed. A. C. Giese), vol. 7, pp. 85–114. New York: Academic Press.

    Google Scholar 

  • Behnke, H.-D.: 1973. Plastids in sieve elements and their companion cells. Investigations on monocotyledons, with special reference to Smilax and Tradeseantia. Planta 110, 321–328.

    Article  Google Scholar 

  • Boardman, N. K.: 1968. The photochemical systems of photosynthesis. In Advances in enzymology (ed. F. F. Nord), vol. 30, pp. 1–79. New York: Wiley-Interscience.

    Google Scholar 

  • Buvat, R.: 1969. Plant cells: an introduction to plant protoplasm. New York: McGraw-Hill.

    Google Scholar 

  • Clowes, F. A. L., Juniper, B. E.: 1968. Plant cells. Oxford: Blackwell.

    Google Scholar 

  • Coombs, J., Baldry, C. W.: 1972. C-4 pathway in Pennisetum purpureum. Nature 238, 268–270.

    Article  CAS  Google Scholar 

  • D’Aoust, A. L., Canvin, D. T.: 1973. Effect of oxygen concentration on the rates of photosynthesis and photorespiration of some higher plants. Can. J. Bot. 51, 457–464.

    Article  Google Scholar 

  • Gilder, J., Cronshaw, J.: 1973. Adenosine triphosphatase in the phloem of Cucurbita. Planta 110, 189–204.

    Article  CAS  Google Scholar 

  • Givan, C. V., Leech, R. M.: 1971. Biochemical autonomy of higher plant chloroplasts and their synthesis of small molecules. Biol. Rev. 46, 409–428.

    Article  CAS  Google Scholar 

  • Gracen, V. E., Jr., Hilliard, J. H., Brown, R. H., West, S. H.: 1972. Peripheral reticulum in chloroplasts of plants differing in CO2 fixation pathways and photorespiration. Planta 107, 189–204.

    Article  CAS  Google Scholar 

  • Grahm, D., Reed, M. L.: 1971. Carbonic anhydrase and the regulation of photosynthesis. Nature 231, 81–83.

    Google Scholar 

  • Hall, D. O., Evans, M. C. W.: 1972. Photosynthetic photophosphorylation in chloroplasts. Sub-cell. Biochem. 1, 197–206.

    CAS  Google Scholar 

  • Hatch, M. D., Osmond, C. B., Slatyer, R. O. (eds.): 1971. Photosynthesis and photorespiration. New York: Wiley-Interscience.

    Google Scholar 

  • Heber, U.: 1973. Stoichiometry of reduction and phosphorylation during illumination of intact chloroplasts. Biochim. Biophys. Acta 305, 140–152.

    Article  PubMed  CAS  Google Scholar 

  • Kok, B.: 1972. Efficiency of photosynthesis. In Horizons of bioenergetics (eds. A. San Pietro, H. Gest), pp. 153–170. New York: Academic Press.

    Google Scholar 

  • Kozlowski, T. T. (ed.): 1972. Water deficits and plant growth, vol. 3. New York: Academic Press.

    Google Scholar 

  • Krause, G. H.: 1971. Indirekter ATP-transport zwischen Chloroplasten und Zytoplasma während der Photosynthesis. Z. Pflanzenphysiol. 65, 13–23.

    CAS  Google Scholar 

  • Laetsch, W. M.: 1970. Chloroplast structural relationships in leaves of C4 plants. In Advances in C4 photosynthesis and photorespiration in plants (ed. R. O. Slatyer). Canberra: Austral. Acad. Sci.

    Google Scholar 

  • Lex, M., Stewart, W. D. P.: 1973. Algal nitrogenase, reductant pools and photosystem I activity. Biochem. Biophys. Acta 292, 436–443.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, M. M., Jarvis, P. G.: 1971. Methods for measuring photorespiration in leaves. In Plant photosynthetic production, manual of methods (eds. Z. Sestak, J. Catsky, P. G. Jarvis), pp. 294–315. The Hague: Dr. W. Junk, N.V. Publ.

    Google Scholar 

  • Ludlow, M. M., Wilson, G. L.: 1972. Photosynthesis of tropical pasture plants. IV. Basis and consequences of differences between grasses and legumes. Austral. J. Biol. Sci. 25, 1133–1145.

    CAS  Google Scholar 

  • Ludwig, L. J., Canvin, D. T.: 1971. The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. Plant Physiol. 48, 712–719.

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie, E. A. C.: 1971. Phloem translocation. Facts and mechanisms: a comparative study. Biol. Rev. 46, 429–482.

    Article  Google Scholar 

  • Oaks, A., Bidwell, R. G. S.: 1970. Compartmentation of intermediary metabolites. Ann. Rev. Plant Physiol. 21, 43–66.

    Article  CAS  Google Scholar 

  • Poincelot, R. P.: 1972. Intracellular distribution of carbonic anhydrase in spinach leaves. Biochem. Biophys. Acta 258, 637–642.

    PubMed  CAS  Google Scholar 

  • Pridham, J. B. (ed.): 1968. Plant cell organelles. New York: Academic Press.

    Google Scholar 

  • Rabinowitch, E. I.: 1945. Photosynthesis and related processes. New York: Wiley-Interscience.

    Google Scholar 

  • Raven, J. A.: 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45, 167–221.

    Article  CAS  Google Scholar 

  • Raven, J. A.: 1972a. Endogenous inorganic carbon sources in plant photosynthesis. I. Occurrence of the dark respiratory pathways in illuminated green cells. New Phytol. 71, 227–247.

    Article  CAS  Google Scholar 

  • Raven, J. A.: 1972b. Endogenous inorganic carbon sources in plant photosynthesis. II.Comparison of total CO2 production in the light with measured CO2 evolution in the light. New Phytol. 71, 955–1014.

    Google Scholar 

  • Reid, A.: 1970. Energetic aspects of the interaction between photosynthesis and respiration. In Prediction and measurement of photosynthetic productivity, pp. 231–246. Wageningen: Pudoc.

    Google Scholar 

  • Rosado-Albeiro, J., Weir, E., Stocking, C. R.: 1968. Continuity of the chloroplast membrane systems in Zea mays L. Plant Physiol. 43, 1325–1329.

    Article  Google Scholar 

  • Schurmann, P., Buchanan, B. B., Arnon, D. I.: 1972. Role of cyclic photophosphorylation in photosynthetic carbon dioxide assimilation by isolated chloroplasts. Biochim. Biophys. Acta 267, 111–124.

    Article  PubMed  CAS  Google Scholar 

  • Todd, G. W., Chadwick, D. L., Tsai, S.: 1972. Effect of wind on plant respiration. Physiol. Plantarum 27, 324–346.

    Article  Google Scholar 

  • Weintraub, R. L.: 1944. Radiation and plant respiration. Bot. Rev. 10, 383–459.

    Article  Google Scholar 

  • Zelitch, I.: 1971. Photosynthesis, photorespiration, and plant productivity. New York: Academic Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Alberte, R.S., Hesketh, J.D., Baker, D.N. (1975). Aspects of Predicting Gross Photosynthesis (Net Photosynthesis Plus Light and Dark Respiration) for an Energy-Metabolic Balance in the Plant. In: Gates, D.M., Schmerl, R.B. (eds) Perspectives of Biophysical Ecology. Ecological Studies, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87810-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87810-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87812-1

  • Online ISBN: 978-3-642-87810-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics