Skip to main content

Heat-Transfer Analysis of Animals: Some Implications for Field Ecology, Physiology, and Evolution

  • Chapter
Perspectives of Biophysical Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 12))

Abstract

Mathematical modeling studies in science are not an end in themselves, but rather a tool. The fundamental purpose of mathematical analysis is to provide generalized, intellectually tractable insight into the operation and interaction of the complex factors involved in the physical and biological process under study. Two often contradictory requirements must be met. First, the model must include all relevant factors, with sufficient detail to give predictive precision for validation and practical applications of the analysis. Second, the analysis must be simple enough to be intellectually tractable and give a clearer subjective understanding than the raw data and knowledge of the individual processes involved. The second requirement implies that the model be constructed so that it is analytically soluble. For the complex nonlinear processes in biology, this is seldom possible without sacrificing precision. This is certainly true in thermal analysis of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakken, G. S., Gates, D. M.: 1974. Notes on “Heat loss from a Newtonian animal.” J. theoret. Biol. 45, 283–292.

    Article  CAS  Google Scholar 

  • Bakker, R. T.: 1971. Dinosaur physiology and the origin of mammals. Evolution 25, 636–658.

    Article  Google Scholar 

  • Bartholomew, G. A., Lasiewski, R. C.: 1965. Heating and cooling rates, heart rate, and simulated diving in the Galapagos marine iguana. Comp. Biochem. Physiol. 16, 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew, G. A., Lasiewski, R. C., Tucker, V. A.: 1963. Control of changes in body temperature, metabolism, and circulation by the Agamid lizardAmphibolurus barbatus. Physiol. Zoöl. 36, 199–218.

    Google Scholar 

  • Birkebak, R. C.: 1966. Heat transfer in biological systems. Intern. Rev. Gen. and Expt. Zool. 2, 269–344.

    Google Scholar 

  • Brattstrom, B. H.: 1965. Body temperatures of reptiles. Am. Midland Naturalist 73, 376–422.

    Article  Google Scholar 

  • Bustard, H. R.: 1967. Activity cycle and thermoregulation in the Australian gecko Gehyra variegata. Copeia 1967, 753–758.

    Article  Google Scholar 

  • Cabanac, H. P., Hammel, H. T.: 1971. Peripheral sensitivity and temperature regulation inTiliqua scincoides. Intern. J. Bioclimatol. Biometeor. 15, 239–243.

    Article  CAS  Google Scholar 

  • Colbert, E. H., Cowles, R. B., Bogert, C. M.: 1946. Temperature tolerances in the American alligator and their bearing on the habits, evolution and extinction of the dinosaurs. Bull. Am. Museum Nat. Hist. 86(7), 329–373.

    Google Scholar 

  • Cowles, R. B.: 1940. Additional implications of reptilian sensitivity to high temperature. Am. Naturalist 74, 542–561.

    Article  Google Scholar 

  • Cowles, R. B.: 1946. Fur and feathers: a response to falling temperature? Science 103, 74–75.

    Article  Google Scholar 

  • Cowles, R. B.: 1958. Possible origin of dermal temperature regulation. Evolution 12, 347–357.

    Article  Google Scholar 

  • Cowles, R. B., Bogert, C. M.: 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Museum Nat. Hist 83(5), 261–296.

    Google Scholar 

  • Davis, L. B., Jr., Birkebak, R. C.: 1973. On the transfer of energy in layers of fur. Biophys. J. 14, 249–268.

    Article  Google Scholar 

  • Dawson, W. R., Evans, F. C.: 1960. Relation of growth and development to temperature regulation in nestling vesper sparrows. Condor 62, 329–340.

    Article  Google Scholar 

  • Dawson, W. R., Evans, F. C., Hudson, J. W.: 1970. Birds. In Comparative physiology of thermoregulation (ed. G. C. Whittow), vol. 1, pp. 223–310. New York: Academic Press.

    Google Scholar 

  • Gunn, D. L.: 1942. Body temperature in poikilothermic animals. BioI. Rev. 17, 293–314.

    Article  Google Scholar 

  • Hammel, T. T., Caldwell, F. T., Abrams, R. M.: 1967. Regulation of body temperature in the blue-tongued lizard. Science 156, 1260–1262.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J. D., Gagge, A. P., Stolwijk, J. A. J. (eds.): 1970. Physiological and behavioural temperature regulation. Springfield, Ill.: Charles C Thomas.

    Google Scholar 

  • Heath, J. E.: 1964. Head-body temperature differences in horned lizards. Physiol. zost, 37, 273–279.

    Google Scholar 

  • Heath, J. E.: 1965. Temperature regulation and diurnal activity in horned lizards. Univ. Calif. Berkeley Pub I. Zool. 64(3), 97–136.

    Google Scholar 

  • Heath, J. E.: 1968. The origins of thermoregulation. In Evolution and environment (ed. E. T. Drake), pp. 259–278. New Haven: Yale Univ. Press.

    Google Scholar 

  • Heinrich, B.: 1971. Temperature regulation of the sphinx moth, Manduca sexta, Part I. J. Expt. Biol. 54, 141–152.

    CAS  Google Scholar 

  • Herrington, L. P., Winslow, C. E. A., Gagge, A. P.: 1937. The relative influence of radiation and convection upon vasomotor temperature regulation. Am. J. Physiol. 120, 133–143.

    Google Scholar 

  • Jerison, H. J.: 1971. More on why birds and mammals have big brains. Am. Naturalist 105, 185–189.

    Article  Google Scholar 

  • Kerslake, D. M.: 1972. The stress of hot environments. New York: Cambridge Univ. Press.

    Google Scholar 

  • Kreith, F.: 1965. Principles of heat transfer. Scranton, Pa.: International Textbook.

    Google Scholar 

  • McMahon, T.: 1973. Size and shape in biology. Science 179, 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  • Pearman, G. I., Weaver, H. L., Tanner, C. B.: 1972. Boundary layer heat transfer coefficients under field conditions. Agric. Meteor. 10, 83–92.

    Article  Google Scholar 

  • Porter, W. P., Gates, D. M.: 1969. Thermodynamic equilibria of animals with environment. EcoI. Monogr. 39, 227–244.

    Article  Google Scholar 

  • Porter, W. P., Gates, D. M., Mitchell, J. W., Beckman, W. A., DeWitt, C. B.: 1973. Behavioral implications of mechanistic ecology. Oecologia 13, 1–54.

    Article  Google Scholar 

  • Schmidt-Nielsen, K.: 1964. Desert animals: physiological problems of heat and water. London: Oxford.

    Google Scholar 

  • Scholander, P. F., Walters, V., Hock, R., Irving, L.: 1950. Body insulation of some arctic and tropical mammals and birds. Biol. Bull. 99, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, D. M.: 1973. Temperature regulation in the platypus, Ornithorhynchus anatinus (Shaw). Compo Biochem. Physiol. 45A, 705–715.

    Article  Google Scholar 

  • Spotila, J. R., Lommen, P. W., Bakken, G. S., Gates, D. M.: 1973. A mathematical model for body temperatures of large reptiles: implications for dinosaur ecology. Am. Naturalist 107, 391–404.

    Article  Google Scholar 

  • Spray, D. C., May, M. L.: 1972. Heating and cooling rates in four species of turtles Compo Biochem. Physiol. 41A, 507–522.

    Google Scholar 

  • Stiles, F. G.: 1971. Time, energy, and territoriality of the Anna hummingbird (Calypte anna). Science 173, 818–821.

    Article  PubMed  CAS  Google Scholar 

  • Strunk, T. H.: 1971. Heat loss from a Newtonian animal. J. theoret. BioI. 33, 35–61.

    Article  CAS  Google Scholar 

  • Cowles, R. B.: 1940. Additional implications of reptilian sensitivity to high temperature. Am. Naturalist 74, 542–561.

    Article  Google Scholar 

  • Tracy, C. R.: 1972. Newton’s law: its application for expressing heat losses from homeotherms. Bioscience 22, 656–659.

    Article  Google Scholar 

  • Vernon, H. M.: 1932. The measurement of radiant heat in relation to human comfort. J. Ind. Hyg. Toxicol. 14, 95–111.

    Google Scholar 

  • Vinegar, A., Hutchison, V. H., Dowling, H. G.: 1970. Metabolism, energetics, and thermoregulation during breeding of snakes of the genus Python (Reptilia, Boidae). Zoologica 55, 19–48.

    Google Scholar 

  • Yeats, N. T. M.: 1967. The heat tolerance of sheep and cattle in relation to fleece or coat character. In Biometeorology (ed. S. W. Tromp, W. H. Weihe), Proc. Third Intern. Biometeor. Congr., pp. 464–470. Oxford: Pergamon Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bakken, G.S., Gates, D.M. (1975). Heat-Transfer Analysis of Animals: Some Implications for Field Ecology, Physiology, and Evolution. In: Gates, D.M., Schmerl, R.B. (eds) Perspectives of Biophysical Ecology. Ecological Studies, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87810-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87810-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87812-1

  • Online ISBN: 978-3-642-87810-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics