Advertisement

Endotheliale Dysfunktion: Mechanismen und prognostische Bedeutung für die Herzinsuffizienz

  • H. Drexler
Chapter
  • 20 Downloads

Zusammenfassung

Bei Patienten mit Herzinsuffizienz ist die erhöhte Vasokonstriktion einer der am häufigsten festzustellenden hämodynamischen Befunde. Diese Vasokonstriktion ist assoziiert mit der Aktivierung des neurohormonalen Systems. Eine derartige neurohormonale Aktivierung führt zu einer Widerstandserhöhung, die ihrerseits die Ejektionsfraktion erniedrigt, sodass ein Circulus vitiosus eingeleitet wird (Abb. 1). Da jedoch die Beziehung zwischen den Plasmakonzentrationen dieser Neurohormone und der systemischen Erhöhung des vaskulären Widerstandes nur eine sehr geringe Korrelation aufweist, sind mit großer Wahrscheinlichkeit andere Systeme für die Modulation des vaskulären Tonus verantwortlich. Es ist allgemein bekannt, dass endotheliale Zellen eine Reihe von Substanzen produzieren, die zusammenfassend mit der Bezeichnung Endothelium-Derived-Relaxing-Faktor (EDRF) bezeichnet werden. Diese führen zu einer lokalen Relaxation [1–5] der darunter liegenden vaskulären glatten Muskelzellen. Hierdurch werden sowohl der basale Muskeltonus aufrecht erhalten als auch konstriktorisch wirkende Stimuli (ausgelöst z. B. durch Acetylcholin) ausbalanciert. Studien der letzten Jahre mit isolierten vaskulären Präparationen haben gezeigt, dass die endothelabhängige Vasodilatation im Tiermodell bei Hypertonie [6, 7], Atherosklerose [8, 9, 10] und Herzinsuffizienz gestört ist [11, 12].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–382PubMedCrossRefGoogle Scholar
  2. 2.
    Moncada S, Palmer RMJ, Higap EA (1988) The discovery of nitric oxide as the endogenous nitrovasoddilator. Hypertension 12: 365–372PubMedCrossRefGoogle Scholar
  3. 3.
    Griffith TM, Lewis MJ, Neuby AL, Henderson AH (1988) Endothelium-derived relaxing factor. J Am Coll Cardiol 12: 797–806PubMedCrossRefGoogle Scholar
  4. 4.
    Vanhoutte PM (1989) Endothelium and control of vascular function: State of the art lecture. Hypertension 13: 658–667PubMedCrossRefGoogle Scholar
  5. 5.
    Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526PubMedCrossRefGoogle Scholar
  6. 6.
    Konishi M, Su C (1983) Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5: 881–886PubMedCrossRefGoogle Scholar
  7. 7.
    Luscher TF (1990) Imbalance of endothelium-derived relaxing and contractring factors: a new concept in hypertension? Am Hypertens 3: 317–330Google Scholar
  8. 8.
    Coene MC, Herman AG, Jordaens F, Van Hove C, Verbeuren TJ, Zinnekeyn L (1985) Endothelium-dependent relaxations in isolated arteries of control and hypercholesterolemia rabbits. Br J Pharmacol 85: 267 PGoogle Scholar
  9. 9.
    Shimokawa H, Vanhoutte PM (1988) Dietary cod liver oil improves endothelium-dependent responses in hypercholesterolemic and atherosclerotic porcine coronary arteries. Circulation 78: 1421–1430PubMedCrossRefGoogle Scholar
  10. 10.
    Selke RW, Armstrong ML, Harrison DG (1990) Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 81: 1586–1593CrossRefGoogle Scholar
  11. 11.
    Ontkean MT, Gay RG, Lewis HS, Greenberg BH (1989) Diminished endothelium-derived relaxing factor (EDRF) activity in heart failure. Circulation 80 (Supp. II): II - 436Google Scholar
  12. 12.
    Kaiser L, Spickard RC, Olivier NB (1989) Heart failure depresses endothelial cell-dependent relaxation to acetylcholine in canine femoral artery. Am J Physiol 256: H962 - H967PubMedGoogle Scholar
  13. 13.
    Löscher TF, Diederich D, Siebennan R, Lehmann K, Stulz P, von Segesser L, Yang Z, Turina M, Gradel E, Weber E, Buhler FR (1986) Difference beween endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med 315: 1046–1051CrossRefGoogle Scholar
  14. 14.
    Forstermann U, Mugge A, Alheid U, Haverich A, Frolich JC (1988) Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res 62: 185–190PubMedCrossRefGoogle Scholar
  15. 15.
    Lüscher TF, Cooke JP, Houston DS, Deves RJ, Vanhoutte PM (1987) Mayo Clin Proc 62: 601–606PubMedGoogle Scholar
  16. 16.
    Greenberg B, Rhoden K, Bernes PJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J. Physiol 252: H434 - H438PubMedGoogle Scholar
  17. 17.
    Kubo SH, Rector TS, Bank AJ, Wiliams RA, Heifetz SM (1991) Endothelium-Dependent Vasodilation is attenuated in Patients with Heart Failure. Circulation 84: 1589–1596PubMedCrossRefGoogle Scholar
  18. 18.
    Drexler H, Hayoz D, Münzel Th, Hornig B, Just H, Brunner HR, Zelis R (1992) Endothelial Function in chronic congestive Heart Failure. Am J Cardiol 69: 1596–1601PubMedCrossRefGoogle Scholar
  19. 19.
    Katz SD, Biasucci L, Sabba C, Strom JA, Jondeau GJ, Galvano M Salomon S, Ni-colic SD, Forman R, Le Jentel TH (1992) Impaired Enothelium-mediated Vasodilation in the Peripheral vasculature of Patients with Congestive Heart Failure. J Am Coll Cardiol 19: 918–925PubMedCrossRefGoogle Scholar
  20. 20.
    Hornig B, Maier V, Drexler H (1996) Physical Training improvers Endothelial Function in Patients with chronic Heart Failure. Circulation 93: 210–214PubMedCrossRefGoogle Scholar
  21. 21.
    Drexler H, Kästner S, Strobel A, Studer R, Brodde O, Hasenfuß G (1998) Expression, Activity and Functional Significance of Inducible Nitric oxide Synthase in the Failing Human Heart. J Am Coll Cardiol 32: 955–963PubMedCrossRefGoogle Scholar
  22. 22.
    Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, Xu XB, Kubari Y, Pritchard K, Sessa WC, Hintze TH (1996) Reduced Gene Expression of Vascular Endothel NO Synthase and Cyclooxygenase-1 in Heart Failure. Circulation Research 78: 85–64CrossRefGoogle Scholar
  23. 23.
    Miller VM, Aarhus LL, Vanhoutte PM (1996) Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol 251: H510 - H527Google Scholar
  24. 24.
    Miller VM, Vanhoutte PM (1988) Enhanced release of endothelium-derived relaxing factor by chronic increases in blood flow. Am J. Physiol 255: H446 - H451PubMedGoogle Scholar
  25. 25.
    Wang J, Yu XB, Wolin MS, Hintze TH (1990) Enhanced flow-dependent endothelium-derived dilation of large coronary artery by chronic ventricular pacing in conscious dogs. Circulation 82 (Suppl III):III-345. AbstractGoogle Scholar
  26. 26.
    Van Citters RL, Franklin D (1969) Cardiovascular performance of Alaska sled dogs during exercise. Circ Res 24: 33–42PubMedCrossRefGoogle Scholar
  27. 27.
    Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic Exercise in Dogs Increases Coronary Vascular Nitric Oxide Produktion and Endothelial Cell Nitric Oxide Synthase Gene Expression. Circulation Research 74: 349–353PubMedCrossRefGoogle Scholar
  28. 28.
    Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107: 341–347PubMedCrossRefGoogle Scholar
  29. 29.
    Hsieh HJ, Li NQ, Frangos JA, (1992) Shear-induced platelet-derived growth factor gene expression in human andothelial cells is mediated by protein kinase C. J Cell Phasiol 150: 552–558CrossRefGoogle Scholar
  30. 30.
    Ohno M, Cooke J, Dzau V, Gibbons G (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. J Clin Invest 95: 1363–1369PubMedCrossRefGoogle Scholar
  31. 31.
    Nagel T, Resnick N, Atkinson W, Dewey C, Gimbrone M (1994) Shear stress selectively upregulated intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94: 885–891PubMedCrossRefGoogle Scholar
  32. 32.
    Malek A, Greene A, Izumo S (1993) Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc Natl Acad Sci USA 90: 5999–6003PubMedCrossRefGoogle Scholar
  33. 33.
    Diamond S, Eskin S, McIntire L (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cell. Science 243: 1483–1485PubMedCrossRefGoogle Scholar
  34. 34.
    Shyy Y, Hsieh H, Usami S, Chien S (1994) Fluid shear stress induces a biphysic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 91: 4678–4682PubMedCrossRefGoogle Scholar
  35. 35.
    Malek AM, Jackman R, Rosenberg RD, Izumo S (1994) Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res 74: 852–860PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshizumi M, Kurihara H, Suguyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1989) Hemodynamic shear stress stimulates endothelin production by cultured endothelial calls. Biochem Biophys Res Commun 161: 859–864PubMedCrossRefGoogle Scholar
  37. 37.
    Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90: 2092–2096PubMedCrossRefGoogle Scholar
  38. 38.
    Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269: C1371–1378PubMedGoogle Scholar
  39. 39.
    Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance: a novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 95: 187–194PubMedCrossRefGoogle Scholar
  40. 40.
    Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG (1996) Shear Stress Modulates Expression of Cu/Zn Superoxide Dismutase in Human Aortic Endothelial Cells. Circulation Research 79: 32–37PubMedCrossRefGoogle Scholar
  41. 41.
    Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, Le Jentel T (2001) Physical Training in Patients with Chronic Heart Failure Enhances the Expression of Genes Encoding Antioxidative Enzymes. J Am Coll Cardiol 38: 194–198PubMedCrossRefGoogle Scholar
  42. 42.
    Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial Dysfunction in Chronic Myocardial Infarction Despite Increased Vascular Endothelial Nitric Oxide Synthase and Soluble Guanylate Cyclase Expresssion. Circulation 100: 292–298PubMedCrossRefGoogle Scholar
  43. 43.
    Münzel T, Harrison DG (1999) Increased Superoxide in Heart Failure. Circulation 100: 216–218PubMedCrossRefGoogle Scholar
  44. 44.
    Hornig B, Arakawa N, Kohler C, Drexler H (1998) Vitamin C Improves Endothelial Function of Conduit Arteries in Patients With Chronic Heart Failure. Circulation 97: 363–368PubMedCrossRefGoogle Scholar
  45. 45.
    Oyanagui Y (1984) Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem 142: 290–296PubMedCrossRefGoogle Scholar
  46. 46.
    Dikalov S, Skatchkov M, Bassenge E (1997) Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyrrolidine and 1-hydroxy-2,2,6, 6-tetramethyl 4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants. Biochem Biophys Res Commun 231: 701–704PubMedCrossRefGoogle Scholar
  47. 47.
    Dikalov S, Fink B, Skatchkov M, et al (1999) Comparison of glyceryl trinitrateinduced with pentaerithrityl tetranitrate-induced in vivo formation of superoxide radicals: effect of vitamin C. Free Radic Biol Med 27: 170–176PubMedCrossRefGoogle Scholar
  48. 48.
    Landmesser U, Spiekermann St, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DB, Hornig B, Drexler H (2002) Vascular Oxidative Stress and Endothelial Dysfunction in Patients with Chronic Heart Failure. Circulation 106: 3073PubMedCrossRefGoogle Scholar
  49. 49.
    Spiekermann St, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, Reepschläger N, Hornig B, Drexler H, Harrison DG (2003) Elektron Spin Resonance Charakterization of Vascular Xanthine and NAD(P)H Oxidase Activity in Patients With Coronary Artery Disease. Circulation 107: 1383PubMedCrossRefGoogle Scholar
  50. 50.
    Landmesser U, Merten R, Spiekermann St, Büttner K, Drexler H, Hornig B (2000) Vascular Extracellular Superoxide Dismutase Activity in Patients With Coronary Artery Disease. Circulation 101: 2264PubMedCrossRefGoogle Scholar
  51. 51.
    Kielstein JT, Impraim B, Simmel S, Bode-Böger St, Tsikas D, Frölich JC, Hoeper MM, Haller H, Miser D (2004) Cardiovaskular Effects of Systemic Nitric Oxide Synthase Inhibition With Asymmetrical Dimethylarginine in Humans. Circulation 109: 172–177PubMedCrossRefGoogle Scholar
  52. 52.
    Keimer R, Stutzer FK, Tsikas D, Troost R, Gutzki F-M, Frölich JC (2003) Lack of oxidative stress during sustained therapy with isosorbide dinitrate and pentaerithrityl tetranitrate in healthy humans: A randomized, double-blind crossover study. J Cardiovasc Pharmacol 41: 284–292PubMedCrossRefGoogle Scholar
  53. 53.
    Arzneimittelkommission der deutschen Ärzteschaft (2003) Arzneiverordnungen: Empfehlungen zur rationalen Pharmakotherapie. Deutscher Ärzteverlag, Köln 20. Aufl.Google Scholar
  54. 54.
    Arzneimittelkommission der deutschen Ärzteschaft (2004) Empfehlungen zur Prophylaxe and Therapie der stabilen koronaren Herzkrankheit. Arzneiverordnungen in der Praxis, Band 31 (Sonderheft 1)Google Scholar
  55. 55.
    Hambrecht R, Fiehn E, Weigle C, Gielen St, Haman C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G (1998) Regular Physical Exercise Corrects Endothelial Dysfunction and Improves Exercise Capacity in Patients With Chronic Heart Failure. Circulation 98: 2709–2715PubMedCrossRefGoogle Scholar
  56. 56.
    Mann DL (1999) Circulation 100: 999–1008PubMedCrossRefGoogle Scholar
  57. 57.
    Fiedler B, Lohmann SM, Smolenski A, Linnemüller St, Pieske B, Schröder F, Molkentin JD, Drexler H, Wollert KC (2002) Inhibition of calcineurin-NFAT hypertrophy singling by cGMP-dependent protein kinase type I in cardiac myocytes. PNAS 99 (17): 11363–11368PubMedCrossRefGoogle Scholar
  58. 58.
    Gruppo Ilaiano per lo Studio della Sopravvivenza nell’infarto Miocardico: GISSI-3 (1994) Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 343: 1115–1122Google Scholar
  59. 59.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscel by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  60. 60.
    Murohara T, Asahara T, Silver M, et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101: 2567–2578PubMedCrossRefGoogle Scholar
  61. 61.
    Kim NN, Villegas S, Summerour SR, et al (1999) Regulation of cardiac fibroblast extracellular matrix production by bradykinin and nitric oxide. J Mol Cell Cardiol 31: 457–466PubMedCrossRefGoogle Scholar
  62. 62.
    Ritchie RH, Schiebinger RJ, LaPointe MC, et al (1998) Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 275: H1370 - H1374PubMedGoogle Scholar
  63. 63.
    Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nassen B, Aretz HT, Lindsey ML, Vancon A-C, Huang PL, Lee RT, Zapol WM, Picard MH (2001) Endothelial Nitric Oxide Synthase Limits Left Ventricular Remodeling After Myocardial Infarction in Mice. Circulation 104: 1286PubMedCrossRefGoogle Scholar
  64. 64.
    Marsden PA, Hen HH, Scherer SW, et al (1993) Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Bio Chem 268: 17478–17488Google Scholar
  65. 65.
    Tesauro M, Thompson WC, Rogliani P, et al (2000) Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of Cardiopulmonary diseases: cleavage of proteins with aspartate vs. glutamate at position 298. Proc Natl Acad Sci USA 97: 2832–2835PubMedCrossRefGoogle Scholar
  66. 66.
    Mc Namara CM, Holubkov R, Postava L, Ramani R, Janosko K, Mathier M, Mc Glowan GA, Murali S, Feldman A, London B (2003) Effect of the Asp298 Variant of Endothelial Nitric Oxide Synthase on Survival for Patients With Congestive Heart Failure. Circulation 107: 1598CrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2004

Authors and Affiliations

  • H. Drexler

There are no affiliations available

Personalised recommendations