Körperliches Training und Endothelfunktion

  • G. Kojda

Zusammenfassung

Körperliche Aktivität ist ein wesentlicher Faktor zur Prävention kardiovaskulärer Erkrankungen [87]. Regelmäßiges Training verbessert die Funktion und das Sauerstoffangebot des Herzens, reduziert Herzfrequenz und Blutdruck, erhöht die maximale kardiale Sauerstoffaufnahme und führt zu verschiedenen Adaptationen von Skelettmuskel, Herzmuskel und zirkulierendem Blutvolumen sowie zu einer Reihe von metabolischen Veränderungen [88–92]. Diese Effekte von körperlichem Training auf die Organfunktionen sind mit einer 30%igen Verminderung der Mortalität von Patienten mit koronarer Herzkrankheit oder Herzinsuffizienz verbunden [91, 93]. An einer Gruppe von nichtrauchenden Rentnern ließ sich sogar eine signifikante Verminderung der Mortalität durch tägliches Wandern von ca. 3,5 km nachweisen [93].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis zu Kapitel 1–5

  1. 1.
    Jayakody TL, Senaratne MPJ, Thompson ABR, Kappagoda CT (1985) Cholesterol feeding impairs endothelium-dependent relaxation of rabbit aorta. Can J Physiol Pharmacol 63: 1206–1209PubMedCrossRefGoogle Scholar
  2. 2.
    Freiman PC, Mitchell GG, Heistad DD, Armstrong ML, Harrison DG (1986) Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 58: 783–789PubMedCrossRefGoogle Scholar
  3. 3.
    Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atheroscleroitc coronary arteries. N Engl J Med 315: 1046–1051PubMedCrossRefGoogle Scholar
  4. 4.
    Golino P, Piscione F, Willerson JT, Capelli-Bigazzi M, Focaccio A, Villari B, Indolfi C, Russolillo E, Condorelli M, Chiariello M (1991) Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med 324: 641–648PubMedCrossRefGoogle Scholar
  5. 5.
    Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertenison. J Clin Invest 92: 652–662PubMedCrossRefGoogle Scholar
  6. 6.
    Moncada S, Higgs A (1993) Mechanisms of disease: The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012PubMedCrossRefGoogle Scholar
  7. 7.
    Busse R, Fleming I (1996) Endothelial dysfunction in atherosclerosis. J Vasc Res 33: 181–194PubMedCrossRefGoogle Scholar
  8. 8.
    Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100 (9): 2153–2157PubMedCrossRefGoogle Scholar
  9. 9.
    Kojda G, Harrison DG (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43: 562–571PubMedCrossRefGoogle Scholar
  10. 10.
    Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101: 1899–1906PubMedCrossRefGoogle Scholar
  11. 11.
    Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52: 375–414PubMedGoogle Scholar
  12. 12.
    Ignarro LJ, Cirino G, Casini A, Napoli C (1999) Nitric oxides as a signaling molecule in the vascular system: An overwies. J Cardiovasc Pharmacol 34: 879–886PubMedCrossRefGoogle Scholar
  13. 13.
    Murad F (1996) The 1996 Albert Lasker Medical Research Awards. Signal transduction using nitric oxide and cyclic guanosine monophosphate. JAMA 276: 1189–1192PubMedCrossRefGoogle Scholar
  14. 14.
    Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666PubMedCrossRefGoogle Scholar
  15. 15.
    Nathan C, Xie Q (1994) Nitric oxide synthases: Roles, tolls, and controls. Cell 78: 915–918PubMedCrossRefGoogle Scholar
  16. 16.
    Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ (1992) Nitric oxides as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 326: 90–94PubMedCrossRefGoogle Scholar
  17. 17.
    Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, Nelson BJ, Nacy CA (1994) Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett 43: 87–94PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson RI, Yanovsky J, Gödecke A, Stevens DR, Schrader J, Haas HL (1997) Endothelial nitric oxide synthase and LTP. Nature 386: 338PubMedCrossRefGoogle Scholar
  19. 19.
    Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93: 6448–6453PubMedCrossRefGoogle Scholar
  20. 20.
    Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vascular response to increased flow in vivo. Hypertension 8: 37–44PubMedCrossRefGoogle Scholar
  21. 21.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399: 601–605PubMedCrossRefGoogle Scholar
  22. 22.
    Wolin MS, Wood KS, Ignarro LJ (1982) Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J Biol Chem 257: 13312–13320PubMedGoogle Scholar
  23. 23.
    Ignarro LJ, Wood KS, Wolin MS (1982) Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA 79: 2870–2873PubMedCrossRefGoogle Scholar
  24. 24.
    Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wand GX, Korth M, Aszódi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fässler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17: 3045–3051PubMedCrossRefGoogle Scholar
  25. 25.
    Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fässler R, Ruth P, Krombach F, Hofmann F (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3,5-monophosphate kinase I. J Exp Med 189: 1255–1263PubMedCrossRefGoogle Scholar
  26. 26.
    Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions [In Process Citation]. Curr Opin Cell Biol 12: 174–179PubMedCrossRefGoogle Scholar
  27. 27.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  28. 28.
    Stamler JS, Loh E, Roddy M-A, Currie KE, Creager MA (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89: 2035–2040PubMedCrossRefGoogle Scholar
  29. 29.
    Huang PL, Huang ZH, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242PubMedCrossRefGoogle Scholar
  30. 30.
    Kannel WB (2000) Fifty years of Framingham Study contributions to understanding hypertension. J Hum Hypertens 14: 83–90PubMedCrossRefGoogle Scholar
  31. 31.
    Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM (1991) Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol 40: 923–931PubMedGoogle Scholar
  32. 32.
    Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78: 921–947PubMedGoogle Scholar
  33. 33.
    Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM (1999) Mechanism of nitric oxide-induced vasodilatation–Refilling of intracellular stores by sarcoplasmic reticulum Cat ATPase and inhibition of store-operated Cat influx. Circ Res 84: 210–219PubMedCrossRefGoogle Scholar
  34. 34.
    Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404: 197–201PubMedCrossRefGoogle Scholar
  35. 35.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853PubMedCrossRefGoogle Scholar
  36. 36.
    Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Kleppisch T, Ruth P, Hofmann F (2000) Mechanisms of NO/cGMP-dependent vasorelaxation [In Process Citation]. Circ Res 87: 825–830PubMedCrossRefGoogle Scholar
  37. 37.
    Horowitz A, Menice CB, Laporte R, Morgan KG (1996) Mechanisms of smooth muscle contraction. Physiol Rev 76: 967–1003PubMedGoogle Scholar
  38. 38.
    Radomski MW, Moncada S (1993) Regulation of vascular hemostasis by nitric oxide. Thromb Haemost 70: 36–41PubMedGoogle Scholar
  39. 39.
    Schini-Kerth VB (1999) Vascular biosynthesis of nitric oxide: effect on hemostasis and fibrinolysis. Transfus Clin Biol 6: 355–363PubMedCrossRefGoogle Scholar
  40. 40.
    Benjamin N, Dutton JAE, Ritter JM (1991) Human vascular smooth muscle cells inhibit platelet aggregation when incubated with glyceryl trinitrate: Evidence for generation of nitric oxide. Br J Pharmacol 102: 847–850PubMedCrossRefGoogle Scholar
  41. 41.
    Moro MA, Russell RJ, Cellek S, Lizasoain I, Su YC, Darley-Usmar VM, Radomski MW, Moncada S (1996) cGMP mediates the vascular and platelet actions of nitric oxide: Confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA 93: 1480–1485PubMedCrossRefGoogle Scholar
  42. 42.
    Rao GH, Krishnamurthi S, Raij L, White JG (1990) Influence of nitric oxide on agonist-mediated calcium mobilization in platelets. Biochem Med Metab Biol 43: 271–275PubMedCrossRefGoogle Scholar
  43. 43.
    Nguyen BL, Saitoh M, Ware JA (1991) Interaction of nitric oxide and cGMP with signal transduction in activated platelets. Am J Physiol Heart Circ Physiol 261: H1043 - H1052Google Scholar
  44. 44.
    Trepakova ES, Cohen RA, Bolotina VM (1999) Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Cat+-ATPase-dependent refilling of Cat stores. Circ Res 84: 201–209PubMedCrossRefGoogle Scholar
  45. 45.
    Bowen R, Haslam RJ (1991) Effects of nitrovasodilators on platelet cyclic nucleotide levels in rabbit blood; Role for cyclic AMP in synergistic inhibition of platelet function by SIN-1 and prostaglandin El. J Cardiovasc Pharmacol 17: 424–433PubMedCrossRefGoogle Scholar
  46. 46.
    Fischer TH, White GC (1987) Partial purification and characterization of thrombolamban, a 22000 dalton cAMP-dependent protein kinase substrate in platelets. Biochem Biophys Res Commun 149: 700–706PubMedCrossRefGoogle Scholar
  47. 47.
    Geiger J, Nolte C, Walter U (1994) Regulation of calcium mobilization and entry in human platelets by endothelium-derived factors. Am J Physiol Cell Physiol 267: C236 - C244Google Scholar
  48. 48.
    Ross R (1999) Mechanisms of disease–Atherosclerosis–An inflammatory disease. N Engl J Med 340: 115–126PubMedCrossRefGoogle Scholar
  49. 49.
    Witztum JL (1994) The oxidation hypothesis of atherosclerosis. Lancet 344: 793–795PubMedCrossRefGoogle Scholar
  50. 50.
    Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85: 753–766PubMedCrossRefGoogle Scholar
  51. 51.
    Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45: 7–17PubMedGoogle Scholar
  52. 52.
    Ross R, Fuster V (1996) The pathogenesis of atherosclerosis. In: Fuster V, Ross R, Topol EJ (eds) Atherosclerosis and Coronary Artery Disease. Lippincott-Raven Publishers, Philadelphia, pp 441–460Google Scholar
  53. 53.
    Kubes P, Suzuki M, Granger DN (1991) Nitrix oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655PubMedCrossRefGoogle Scholar
  54. 54.
    Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 93: 9114–9119PubMedCrossRefGoogle Scholar
  55. 55.
    Niu XF, Smith CW, Kubes P (1994) Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res 74: 1133–1140PubMedCrossRefGoogle Scholar
  56. 56.
    Schwartz SM (1997) Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest 99: 2814–2817PubMedCrossRefGoogle Scholar
  57. 57.
    Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268: 14553–14556PubMedGoogle Scholar
  58. 58.
    Claesson-Welsh L (1994) Platelet-derived growth factor receptor signals. J Biol Chem 269: 32023–32026PubMedGoogle Scholar
  59. 59.
    Cook SJ, McCormick F (1993) Inhibition by cAMP of Ras-dependent activation of Raf [see comments]. Science 262: 1069–1072PubMedCrossRefGoogle Scholar
  60. 60.
    Scott-Burden T, Vanhoutte PM (1993) The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 87 (Suppl 5): V51 - V55Google Scholar
  61. 61.
    Nakaki T, Nakayama M, Kato R (1990) Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur J Pharmacol Mol Pharmacol 189: 347–353CrossRefGoogle Scholar
  62. 62.
    Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL (1998) Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J Clin Invest 101: 1225–1232PubMedCrossRefGoogle Scholar
  63. 63.
    Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol Cell Physiol 267: C1405 - C1413Google Scholar
  64. 64.
    Osinski MT, Schrör K (1999) Antimitogenic actions of sildenafil and organic nitrates via activation of protein kinase. A following inhibition of cGMP-inhibited phosphodiesterase. Basic Res Cardiol 94 (5): 403 (Abstract)Google Scholar
  65. 65.
    Kojda G, Kottenberg K, Nix P, Schlüter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78: 91–101PubMedCrossRefGoogle Scholar
  66. 66.
    Tanner FC, Meier P, Greutert H, Champion C, Nabel EG, Löscher TF (2000) Nitric oxide modulates expression of cell cycle regulatory proteins–A cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 101: 1982–1989PubMedCrossRefGoogle Scholar
  67. 67.
    Koppenol WH (1998) The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 25: 385–391PubMedCrossRefGoogle Scholar
  68. 68.
    Bonini MG, Radi R, Ferrer-Sueta G, Ferreira AM, Augusto 0 (1999) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J Biol Chem 274: 10802–10806Google Scholar
  69. 69.
    Bonini MG, Augusto O (2001) Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J Biol Chem 276: 9749–9754PubMedCrossRefGoogle Scholar
  70. 70.
    Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298: 431–437PubMedCrossRefGoogle Scholar
  71. 71.
    Pfeiffer S, Schmidt K, Mayer B (2000) Dityrosine formation outcompetes tyrosine nitration at low steady-state concentrations of peroxynitrite–Implications for tyrosine modification by nitric oxide/superoxide in vivo. J Biol Chem 275: 6346–6352PubMedCrossRefGoogle Scholar
  72. 72.
    Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4344–4250Google Scholar
  73. 73.
    Cudd A, Fridovich I (1982) Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutase. J Biol Chem 257: 11443–11447PubMedGoogle Scholar
  74. 74.
    Goldstein S, Czapski G (1995) The reaction of NO’ with OZ and HZ: A pulse radiolysis study. Free Radic Biol Med 19: 505–510PubMedCrossRefGoogle Scholar
  75. 75.
    Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 10: 1285–1292PubMedCrossRefGoogle Scholar
  76. 76.
    Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424 - C1437PubMedGoogle Scholar
  77. 77.
    Recalcati S, Taramelli D, Conte D, Cairo G (1998) Nitric oxide-mediated induction of ferritin synthesis in J774 macrophages by inflammatory cytokines: role of selective iron regulatory protein-2 downregulation. Blood 91: 1059–1066PubMedGoogle Scholar
  78. 78.
    Oberle S, Schwartz P, Abate A, Schroder H (1999) The antioxidant defense protein ferritin in a novel and specific target for pentaerithrityl tetranitrate in endothelical cells. Biochem Biophys Res Commun 261: 28–34PubMedCrossRefGoogle Scholar
  79. 79.
    Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267: 18148–18153PubMedGoogle Scholar
  80. 80.
    Durante W, Kroll MH, Christodoulides N, Peyton KJ, Schafer AI (1997) Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res 80: 557–564PubMedCrossRefGoogle Scholar
  81. 81.
    Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517–554PubMedCrossRefGoogle Scholar
  82. 82.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046PubMedCrossRefGoogle Scholar
  83. 83.
    Furchgott RF, Jothianandan D (1991) Endothelium-dependent and -independent vasodilation involving cyclic GMP: Relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28: 52–61Google Scholar
  84. 84.
    Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105: 1631–1639PubMedCrossRefGoogle Scholar
  85. 85.
    Stralin P, Karlsson K, Johansson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioslcer Thromb Vasc Biol 15: 2032–2036CrossRefGoogle Scholar
  86. 86.
    Drummond GR, Cai H, Davis ME, Ramasamy S, Harrison DG (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86: 347–354PubMedCrossRefGoogle Scholar
  87. 87.
    Gielen S, Schuler G, Hambrecht R (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation 103: E1 - E6PubMedCrossRefGoogle Scholar
  88. 88.
    Hagberg JM (1991) Physiologic adaptations to prolonged high-intensity exercise training in patients with coronary artery disease. Med Sci Sports Exerc 23: 661–667PubMedGoogle Scholar
  89. 89.
    Laslett LJ, Paumer L, Amsterdam EA (1985) Increase in myocardial oxygen consumption indexes by exercise training at onset of ischemia in patients with coronary artery disease. Circulation 71: 958–962PubMedCrossRefGoogle Scholar
  90. 90.
    Rogers MA, Yamamoto C, Hagberg JM, Holloszy JO, Ehsani AA (1987) The effect of 7 years of intense exercise training on patients with coronary artery disease. J Am Coll Cardiol 10: 321–326PubMedCrossRefGoogle Scholar
  91. 91.
    O’Connor GT, Buring JE, Yusuf S, Goldhaber SZ, Olmstead EM, Paffenbarger RSJ, Hennekens CH (1989) An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation 80: 234–244PubMedCrossRefGoogle Scholar
  92. 92.
    Niebauer J, Hambrecht R, Velich T, Hauer K, Marburger C, Kälberer B, Weiss C, Von Hodenberg E, Schlierf G, Schuler G, Zimmermann R, Kübler W (1997) Attenuated progression of coronary artery disease after 6 years of mutlifactorial risk intervention–Role of physical exercise. Circulation 96: 2534–2541PubMedCrossRefGoogle Scholar
  93. 93.
    Hakim AA, Petrovitch H, Burchfiel CM, Ross GW, Rodriguez BL, White LR, Yano K, Curb JD, Abbott RD (1998) Effects of walking on mortality among nonsmoking retired med [see comments]. N Engl J Med 338: 94–99PubMedCrossRefGoogle Scholar
  94. 94.
    Shen W, Zhang X, Zhao G, Wolin MS, Sessa W, Hintze TH (1995) Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise. Med Sci Sports Exerc 27: 1125–1134PubMedGoogle Scholar
  95. 95.
    Sessa WC, Pritchard KA Jr, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74: 349–353PubMedCrossRefGoogle Scholar
  96. 96.
    Delp MD, Laughlin MH (1997) Time course of enhanced endothelium-mediated dilation in aorta of trained rats. Med Sci Sports Exerc 29: 1454–1461PubMedGoogle Scholar
  97. 97.
    Woodman CR, Muller JM, Laughlin MH, Price EM (1997) Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol Heart Circ Physiol 273: H2575 - H2579Google Scholar
  98. 98.
    Maroun MJ, Mehta S, Turcotte R, Cosio MG, Hussain SN (1995) Effects of physical conditioning on endogenous nitric oxide output during exercise. A Appl Physiol 79: 1219–1225Google Scholar
  99. 99.
    Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease [see comments]. N Engl J Med 342: 454–460PubMedCrossRefGoogle Scholar
  100. 100.
    Kojda G, Cheng Y, Burchfield J, Harrison DG (2001) Dysfunctional regulation of eNOS expression in response to exercise in mice lacking one eNOS gene. Circulation (in press)Google Scholar
  101. 101.
    Kojda G, Laursen JB, Ramasamy S, Kent JD, Kurz S, Burchfield J, Shesely EG, Harrison DG (1999) Protein expression, vascular reactivity and soluble guanylate cyclase activity in mice lacking the endothelial nitric oxide synthase: contributions of NOS isoforms to blood pressure and heart rate control. Cardiovasc Res 42: 206–213PubMedCrossRefGoogle Scholar
  102. 102.
    Ahlner J, Andersson RGG, Torfgârd K, Axelsson KL (1991) Organic nitrate esters: Clinical use and mechanisms of actions. Pharmacol Rev 43: 351–423PubMedGoogle Scholar
  103. 103.
    Kojda G (2000) Therapeutic importance of nitrovasodilators. In: Mayer B (ed) Handbook of pharmacology, Vol 143: Nitric Oxide. Springer, Berlin New-York Tokyo, pp 365–384Google Scholar
  104. 104.
    Minamiyama Y, Takemura S, Akiyama T, Imaoka S, Inoue M, Funae Y, Okada S (1999) Isoforms of cytochrome P450 on organic nitrate-derived nitric oxide release in human heart vessels. FEBS Lett 452: 165–169PubMedCrossRefGoogle Scholar
  105. 105.
    Kojda G, Stein D, Kottenberg E, Schnaith EM, Noack E (1995) In vivo effects of pentaerythrityl-tetranitrate and isosorbide-5-mononitrate on the development of atherosclerosis and endothelial dysfunction in cholesterol-fed rabbits. J Cardiovasc Pharmacol 25: 763–773PubMedCrossRefGoogle Scholar
  106. 106.
    Hacker A, Müller S, Meyer W, Kojda G (2001) The nitric oxide donor pentaerythritol tetranitrate can preserve endothelial function in established atherosclerosis. Br J Pharmacol 132: 1707–1714PubMedCrossRefGoogle Scholar
  107. 107.
    Bult H, De Meyer GRY, Herman AG (1995) Influence of chronic treatment with a nitric oxide donor on fatty streak development and reactivity of the rabbit aorta. Br J Pharmacol 114: 1371–1382PubMedCrossRefGoogle Scholar
  108. 108.
    Feelisch M, Ostrowski J, Noack E (1989) On the mechanism of NO-release from sydnonimines. J Cardiovasc Pharmacol 14 (Suppl 11): S13–822PubMedGoogle Scholar
  109. 109.
    Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1: 145–157PubMedCrossRefGoogle Scholar
  110. 110.
    Yusuf S, MacMahonS, Collins R, Peto R (1988) Effect of intravenous nitrates on mortality in acute myocardial infarction: an overview of the randomised trials. Lancet 1 (8594): 1088–1092Google Scholar
  111. 111.
    Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (1994) GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 343: 1115–1122Google Scholar
  112. 112.
    ISIS-4 Collaborative Group (1995) ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58050 patients with suspected acute myocardial infarction. Lancet 345: 669–685CrossRefGoogle Scholar
  113. 113.
    ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1988) Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17 187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2 (8607): 349–360Google Scholar
  114. 114.
    Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) [see comments]. Lancet 344:1383–1389Google Scholar
  115. 115.
    Ko F-N, Wu C-C, Kuo S-C, Lee F-Y, Teng C-M (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84: 4226–4233PubMedGoogle Scholar
  116. 116.
    Wu CC, Ko FN, Kuo SC, Lee FY, Teng CM (1995) YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br J Pharmacol 116: 1973–1978PubMedCrossRefGoogle Scholar
  117. 117.
    Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J 15: 6863–6868PubMedGoogle Scholar
  118. 118.
    Patent Description (2000) Activators of the nitric oxide sensor, soluble guanylate cyclase. Exp Opin Ther Patents 10 (11): 1765–1770CrossRefGoogle Scholar
  119. 119.
    Straub A, Stasch JP, Alonso-Alija C, Benet-Buchholz J, Ducke B, Feurer A, Furstner C (2001) NO-independent stimulators of soluble guanylate cyclase. Bioorg Med Chem Lett 11: 781–784PubMedCrossRefGoogle Scholar
  120. 120.
    Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schroder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410: 212–215PubMedCrossRefGoogle Scholar
  121. 121.
    Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90: 1168–1172PubMedCrossRefGoogle Scholar
  122. 122.
    Böger RH, Bode-Böger SM, Brandes PP, Phivthong-Ngam L, Böhme M, Nafe R, Mügge A, Frölich JC (1997) Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits–Comparison with lovastatin. Circulation 96: 1282–1290PubMedCrossRefGoogle Scholar
  123. 123.
    Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP (1992) L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90: 1248–1253PubMedCrossRefGoogle Scholar
  124. 124.
    Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575PubMedCrossRefGoogle Scholar
  125. 125.
    Cooke JP, Tsao PS (1997) Arginine: A new therapy for atherosclerosis? Circulation 95: 311–312PubMedCrossRefGoogle Scholar
  126. 126.
    Boger RH, Bode-Boger SM (2001) The clinical pharmacology of 1-arginine. Annu Rev Pharmacol Toxicol 41: 79–99PubMedCrossRefGoogle Scholar
  127. 127.
    Manganiello VC, Degerman E (1999) Cyclic nucleotide phosphodiesterase (PDEs): diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents. Thromb Haemost 82: 407–411PubMedGoogle Scholar
  128. 128.
    Polson JB, Strada SC (1996) Cyclic nucleotide phosphodiesterases and vascular smooth muscle. Annu Rev Pharmacol Toxicol 36: 403–427PubMedCrossRefGoogle Scholar
  129. 129.
    Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Oster-loh IH, Gingell C (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8: 47–52PubMedGoogle Scholar
  130. 130.
    Herrmann HC, Chang G, Klugherz BD, Mahoney PD (2000) Hemodynamic effects of sildenafil in men with severe coronary artery disease. N Engl J Med 342: 1622–1626PubMedCrossRefGoogle Scholar
  131. 131.
    Stief CG, Uckert S, Becker AJ, Harringer W, Truss MC, Forssmann WG, Jonas U (2000) Effects of sildenafil on cAMP and cGMP levels in isolated human cavernous and cardiac tissue. Urology 55: 146–150PubMedCrossRefGoogle Scholar
  132. 132.
    Tsuchikane E, Fukuhara A, Kobayashi T, Kirino M, Yamasaki K, Kobayashi T, Izumi M, Otsuji S, Tateyama H, Sakurai M, Awata N (1999) Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation 100: 21–26PubMedCrossRefGoogle Scholar
  133. 133.
    Osinski MT, Rauch BH, Schror K (2001) Antimitogenic actions of organic nitrates are potentiated by sildenafil and mediated via activation of protein kinase A. Mol Pharmacol 59: 1044–1050PubMedGoogle Scholar
  134. 134.
    Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97: 1129–1135PubMedCrossRefGoogle Scholar
  135. 135.
    Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by rho GTPase. J Biol Chem 273: 24266–24271PubMedCrossRefGoogle Scholar
  136. 136.
    Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group [see comments]. N Engl J Med 339: 1349–1357Google Scholar
  137. 137.
    Hecker M, Bara AT, Busse R (1993) Relaxation of isolated coronary arteries by angiotensin-converting enzyme inhibitors: Role of endothelium-derived kinins. J Vasc Res 30: 257–262PubMedCrossRefGoogle Scholar
  138. 138.
    Gainer JV, Morrow JD, Loveland A, King DJ, Brown NJ (1998) Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N Engl J Med 339: 1285–1292PubMedCrossRefGoogle Scholar
  139. 139.
    Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325: 293–302Google Scholar
  140. 140.
    Bowman AJ, Chen CP, Ford GA (1994) Nitric oxide mediated venodilator effects of nebivolol. Br J Clin Pharmacol 38: 199–204PubMedCrossRefGoogle Scholar
  141. 141.
    Cockcroft JR, Chowienczyk PJ, Brett SE, Chen CP, Dupont AG, Van Nueten L, Wooding SJ, Ritter JM (1995) Nebivolol vasodilates human forearm vasculature: evidence for an L-arginine/NO-dependent mechanism. J Pharmacol Exp Ther 274: 1067–1071PubMedGoogle Scholar
  142. 142.
    Broeders MAW, Doevendans PA, Bekkers BCAM, Bronsaer R, Van Gorsel E, Heemskerk JWM, Egbrink MGAO, Van Breda E, Reneman RS, Van der Zee R (2000) Nebivolol: A third-generation ß-blocker that augments vascular nitric oxide release endothelial ß2-adenergic receptor-mediated nitric oxide production. Circulation 102: 677–684PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2001

Authors and Affiliations

  • G. Kojda

There are no affiliations available

Personalised recommendations