Advertisement

Plättchenaktivität unter PETN — Fehlen der Toleranzparameter bei der nicht intermittierenden Gabe

  • B. Fink
  • E. Bassenge
Chapter
  • 12 Downloads

Zusammenfassung

Nitrovasodilatatoren sind seit über 100 Jahren im therapeutischen Einsatz als pro drugs zur Substitution einer gestörten endogenen, im Wesentlichen endothelialen NO-Produktion. Endogen gebildetes NO hat für die Aufrechterhaltung einer Vielzahl von Körperfunktionen eine zentrale Bedeutung. Das endogen gebildete NO ist an der Regulation des Gefäßtonus, des Atemwiderstandes, des Tonus der gastrointestinalen und der urogenitalen glatten Muskulatur beteiligt. Neben der Wirkung von NO auf die glatte Muskulatur spielt es eine Rolle bei der neuronalen Erregungsübertragung im ZNS und im autonomen Nervensystem. NO induziert auch eine Hemmung der Funktion von Thrombozyten. Der sowohl in vitro als auch in vivo gut dokumentierte antiaggregatorische Effekt von NO ist von besonderer Bedeutung, da die koronare Herzkrankheit in sehr vielen Fällen begleitet wird von einer Hyperreaktivität der Thrombozyten. Daher ist die Thrombozytenaktivität sehr bedeutsam für den therapeutischen Wert einer NO-Substitution im Rahmen der Behandlung der koronaren Herzkrankheit. Die Bedeutung der NO-Substitution wurde von Furchgott in seiner Rede zur Verleihung des Nobelpreises 1998 an Furchgott, Ignarro und Murrad in der Aussage zusammengefasst, dass NO ein Signalmolekül ist, das eine Schlüsselrolle für das kardiovaskuläre System einnimmt und zusätzlich eine Reihe weiterer wichtiger Funktionen steuert. Von Ausnahmen abgesehen, werden die Wirkungen von NO vermittelt durch eine Stimulation der löslichen Guanylatzyklase in den entsprechenden Zellen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bakker-Arkema RG, Davidson MH, Goldstein RJ, Davignon J, Isaacsohn JL, Weiss SR, Keilson LM, Brown WV, Miller VT, Shurzinske LJ, Black DM (1996) Die Wirksamkeit and Verträglichkeit des neuen HMG-CoA-Reduktase-Hemmers Atorvastatin bei Patienten mit Hyperglyzeridämie. Perfusion 5: 163–172Google Scholar
  2. Bassenge E (1994) Coronary vasomotor responses: Role of endothelium and nitrovasodilators. Cardiovasc Drugs Ther 8: 601–610PubMedCrossRefGoogle Scholar
  3. Bassenge E, Fink B (1996) Tolerance to nitrates and simultaneous upregulation of platelet activity prevented by enhancing antioxidant state. Naunyn-Schmiedeberg’s Arch Pharmacol 353: 363–367PubMedCrossRefGoogle Scholar
  4. Bassenge E, Fink N, Skatchkov M, Fink B (1998) Dietary Supplement with Vitamin C Prevents Nitrate Tolerance. J Clin Invest 102: 67–71PubMedCrossRefGoogle Scholar
  5. Belch JJF, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65: 245–248PubMedCrossRefGoogle Scholar
  6. Campbell HJ, Campbell GR (1987) Vascular smooth muscle cells in culture. In: Campbell JH, Campbell GR (eds) Vascular smooth muscle cells in culture. Florida: CRC Press 15–21Google Scholar
  7. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal Biochm 162: 156–159CrossRefGoogle Scholar
  8. Darley-Usmar VM, Wiseman H, Halliwell B (1995) Nitric oxide and oxiden radicals: A question of balance. FEBS Lett 369: 131–135Google Scholar
  9. Dikalov S, Skatchkov M, Bassenge E (1997a) Quantification of Peroxynitrite, Superoxide and Peroxyl Radicals ba a New Spin Trap Hydroxylamine 1-Hydroxy2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem Biophy Res Commun 230 (1): 54–57CrossRefGoogle Scholar
  10. Dikalov S, Skatchkov, M, Bassenge E (1997b) Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxypyrrolidine and 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants. Biochem Biophys Res Commun 231 (3): 701–704PubMedCrossRefGoogle Scholar
  11. Dikalov S, Skatchkov M, Fink B, Sommer O, Bassenge E (1998) Formation of Reactive Oxygen Species in Various Vascular Cells During Glyceriltrinate Metabolism. J Cardiovasc Pharmacol Ther 3: 51–62PubMedCrossRefGoogle Scholar
  12. Fink B, Bassenge E (1997) Unexpected, tolerance-devoid vasomotor and platelet actions of pentaerytrityl tetranitrate. J Cardiovasc Pharmacol 30: 831–836PubMedCrossRefGoogle Scholar
  13. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB Capers Q, Taylor WR et al (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circulation Research 80: 45–51Google Scholar
  14. Griending KK, Miniere CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II Simulates NADH and NADPH Oxidase Activity in Cultures Vascular Smooth Muscle Cells. Circ Res 74: 1141–1148CrossRefGoogle Scholar
  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+-indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450PubMedGoogle Scholar
  16. ISIS-4 (Fourth International Study of Infarct Survival) Collaborate Croup (1994) ISIS-4: A randomised factorial trial assessing early oral catopril, oral mononitrate and intravenouss magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Eur Heart J 15: 608–619Google Scholar
  17. Ivanova K, Schaefer M, Drummer C, Gerzer R (1993) Effects of nitric oxide containing compounds on increases in cytosolic ionized Ca2+- and on aggregation of human platelets. Eur J Pharmacol Mol Pharmacol 244: 37–47CrossRefGoogle Scholar
  18. Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M (1998) 3-nitrotyrosine in the proteins of human plasma determinded by an elisa method (vol 330, pg 795) Biochemical Journal 332: 808Google Scholar
  19. Kinn JW, Bache RJ (1998) Effect of Platelet Activation in Coronary Collateral Blood Flow. Circulation 98: 1431–1437PubMedCrossRefGoogle Scholar
  20. Kojda G, Stein D, Kottenberg E, Schnaith EM, Noack E (1995) In vivo Effects of Pentaerithrityltetranitrat and Isosorbide-5-Mononitrate on the Development of Atherosklerosis and Endothelial Dysfunction in Cholesterol-Fed Rabbits. J Cardiovasc Pharmacol 25: 763–773PubMedCrossRefGoogle Scholar
  21. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5: 834–842PubMedCrossRefGoogle Scholar
  22. Loots W, De CF (1994) 5-Hydroxytryptamine dominates over thromboxane A2. In reducing collateral blood flow by activated platelets. Amercian Journal of Physiology 265:H158–164Google Scholar
  23. Löscher TF, Diederich D, Buhler FR, Vanhoutte PM (1990) Interactions between platelets and the vessel wall–role of endothelium-derived vasoactive substances. Hypertens Vols 1: 637–648Google Scholar
  24. Mais DE, Burch RM, Oatis JEJ, Knapp DR, Halushka PV (1986) Photoaffinity tabelling of a thromboxane A2/prostaglandin H; antagonist binding site in human plateles. Biochem Biophys Res Commun 140: 128–133PubMedCrossRefGoogle Scholar
  25. Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in Mammalian cells [Review] [55 refs]. Trends in Biochemical Sciences 22: 477–481PubMedCrossRefGoogle Scholar
  26. Monshizadegan H, Hedberg A, Webb ML (1992) Characterization of binding of a specific antagonist (’H)-SQ 29, 548 to soluble thromoxane A2/Prostaglandin H, ( TP) receptors in human platelet membranes. Life Sci 51: 431–437Google Scholar
  27. Münzel T, Bassenge E (1996) Long-term angiotensin-converting enzyme inhibition with high-dose enalapril retards nitrate tolerance in large epicardial arteries and prevents rebound coronary vasoconstriction in vivo. Circulation 93: 2052–2058PubMedCrossRefGoogle Scholar
  28. Münzel T, Holtz J, Mülsch A, Stewart DJ, Bassenge E (1989) Nitrate tolerance in epicardial arteries of in the venous systems is not reversed by N-acetylcysteine in vivo, but tolerance-independent interactions exist. Circulation 79: 188–197PubMedCrossRefGoogle Scholar
  29. Münzel T, Mülsch A, Holtz J, Just HJ, Harrison DG, Bassenge E (1992) Mechanismus of interaction between the sulfhydryl precursor L-methionine and glyceryl trinitrate: Circulation 86, No. 3: 995–1003Google Scholar
  30. Münzel T, Sayegh H, Freeman BA, Tarpex MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance. J Clin Invest 95: 187–194PubMedCrossRefGoogle Scholar
  31. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. Journal of Clinical Investigation 91: 2546–2551PubMedCrossRefGoogle Scholar
  32. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of Mitrochondrial Electron Transport by Peroxynitrite. Arch Biochem Biophys 308: 89–95PubMedCrossRefGoogle Scholar
  33. Skatchkov M, Larina L, Lain A, Fink N, Bassenge E (1997) Urinary Nitrotyrosine Content as a Marker of Peroxynitrite-induced Tolerance to Organic Nitrates. J Cardiovasc Pharmacol Ther 2: 85–96PubMedCrossRefGoogle Scholar
  34. Stewart DJ, Elssner D, Sommer O, Holtz J, Bassenge E (1986) Altered spectrum of nitroglycerin action in longterm treatment: nitroglyercin-specific venous tolerance with maintenance of arterial vasodepressor potency. Circulation 74: 573–582PubMedCrossRefGoogle Scholar
  35. Sun D, Smith CJ, Sessa WS, Hoegler C, Xu X, Hintze TH (1994) NO-releasing agent, CAS 936, selectively downregulates ECNOS gene expression in dog aortic endothelium. Circulation 90 /2:1–406Google Scholar
  36. Willerson JT, Golino P, Eidt J, Yao SK, Buja LM (1990) Potential Usefulness of combined thromboxane A2 and serotonin receptor blockade for preventing the conversion from chronic to acute coronary artery disease syndromes [Review] [4refs.]. American Journal of Cardiology 66: 48G–53GPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Fink
  • E. Bassenge

There are no affiliations available

Personalised recommendations