Advertisement

Unterschiedliche Wirkungen von Pentaerithrityltetranitrat und Glycerol-Trinitrat auf hämodynamische und biochemische Parameter der Entwicklung von Toleranzphänomenen: Eine humanpharmakologische In-vivo-Studie

  • J. D. Parker
  • T. Gori
  • U. Jurt

Zusammenfassung

Ziel der Untersuchung war die Überprüfung der Hypothese, ob eine kontinuierliche Behandlung mit Pentaerithrityltetranitrat (PETN) im Vergleich und im Gegensatz zu Glycerol-Trinitrat (GTN) keine hämodynamischen oder vaskulären Toleranzphänomene erzeugt. Zusätzlich wurde die Hypothese überprüft, ob eine fehlende Toleranzentwicklung in der mit PEIN behandelten Gruppe assoziiert ist mit einer geringeren Produktion freier zytotoxischer Radikale, die sich biochemisch in einer geringeren Konzentration von zytotoxischen Aldehyden und Isoprostanen manifestiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bassenge E, Fink N, Skatchkov M et al (1998) Dietary supplement with vitamin C prevents nitrate tolerance. J Clin Invest 102 (1): 67–71PubMedCrossRefGoogle Scholar
  2. Brunner D, Meshulam N, Zerieker F (1974) Effectiveness of sustained-action isosorbide dinitrate on exercise induced myocardial ischemia. Chest 66: 282–287PubMedCrossRefGoogle Scholar
  3. Caramori PR, Adelman AG, Azevedo ER et al (1998) Therapy with nitroglycerine increases coronary vasoconstriction in response to acetylcholine. J Am Coll Cardiol 32: 1969–1974PubMedCrossRefGoogle Scholar
  4. Davi G, Alessandrini P, Mezzetti A et al (1997) In vivo formation of 8-Epi-prostaglandin F2 alpha is increased in hypercholesterolemia. Arterioscler Thromb Vasc Biol 17 (11): 3230–3235PubMedCrossRefGoogle Scholar
  5. Dikalov S, Fink B, Skatchkov M et al (1998) Formation of Reactive Oxygen Species in Various Vascular Cells during Glyceryltrinitrate Metabolism. J Cardiovasc Pharmacol Ther 3 (1): 51–62PubMedCrossRefGoogle Scholar
  6. Dikalov S, Fink B, Skatchkov M et al (1999) Comparision of glyceryl trinitrate-induced with pentaerithrityl tetranitrate-induced in vivo formation of superoxide radicals: effect of vitamin C. Free Radic Bio Med 27 (1–2): 170–176CrossRefGoogle Scholar
  7. Dikalov S, Fink B, Skatchkov M et al (1998) Formation of reactive oxygen species by pentaerithrityl-tetranitrate and glyceryl trinitrate in vitro and development of nitrate tolerance. J Pharmacol Exp Ther 286 (2): 938–944PubMedGoogle Scholar
  8. Dikalov S, Skatchkov M, Bassenge E (1997) Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6tetramethyl-4-oxo-piperidine. Biochem Biophys Res Commun 230 (1): 54–57PubMedCrossRefGoogle Scholar
  9. Elliott SJ, Lacey DJ, Chilian WM et al (1998) Peroxynitrite is a contractile agonist of cerebral artery smooth muscle cells. AJP: Heart 275: H1585 - H1591Google Scholar
  10. Ferdinandy P, Danial H, Ambrus I et al (2000) Peroxynitrite Is a Major Contributor to Cytokine-Induced Myocardial Contractile Failure. Circ Res 87: 241–247PubMedCrossRefGoogle Scholar
  11. Fink B, Bassenge E (1997) Unexpected, Tolerance-devoid vasomotor and platelet actions of pentaerithrityl tetranitrate. J Cardiovasc Pharmacol 30 (6): 831–836PubMedCrossRefGoogle Scholar
  12. Fink B, Dikalov S, Bassenge E (2000) A new approach for extracellular spin trapping of nitroglycerin-induced formation of superoxide radicals both in vitro and in vivo. Free Rad Biol Med 28: 121–128PubMedCrossRefGoogle Scholar
  13. Fink B, Dikalov S, Schwemmer M, Stalleicken D, Bassenge E (1999) In vivo induzierte Bildung von reaktiven Sauerstoffspezies durch Behandlung mit Pentaerithrityltetranitrat oder Nitroglyzerin: Wirkung von Vitamin C. In: Mutschler E, Schrör K (Hrsg) Pentaerithrityltetranitrat–Pharmakologisch and klinische Daten zur Koronaren Herzkrankheit. Steinkopff, Darmstadt, S 39–52Google Scholar
  14. Folch J, Lees M, Stanly HS (1957) A simple method for the isolation and purification of the total lipid from animal tissue. J Biol Chem 226: 497–507PubMedGoogle Scholar
  15. Gopaul NK, Anggard EE, Mallet AI et al (1995) Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 368 (1): 225–229PubMedCrossRefGoogle Scholar
  16. Heitzer T, Just H, Brockhoff C et al (1998) Long-term nitroglycerin treatment is associated with supersensitivity to vasoconstrictors in men with stable coronary artery disease: prevention by concomitant treatment with captopril. J Am Coll Cardiol 31 (1): 83–88PubMedCrossRefGoogle Scholar
  17. Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18 (4): 195–199PubMedCrossRefGoogle Scholar
  18. Jurt U, Gori T, Parker JD (2000) Pentaerithrityltetranitrate therapy is not associated with the development of tolerance. Euro Heart Journal 21 (Suppl): P 2306Google Scholar
  19. Jurt U, Gori T, Parker JD (2001) Differential Effects of Pentaerythritol Tetranitrate and Nitroglycerin on the Development of Tolerance and Evidence of Lipid Peroxidation: A Human in vivo Study. J Am Coll Cardiol, in pressGoogle Scholar
  20. Jansen W, Osterspey A, Tauchert M, Schmid G et al (1982) 5-Isosorbidmononitrat unter Ruhe-and Belastungsbedingungen bei koronarer Herzkrankheit. Dtsch Med Wochenschrift 107: 1499–1506Google Scholar
  21. Kojda G (1997) Pentaerithrityltetranitrat - NO-vermittelte Vasoprotektion and Hämodynamik. Steinkopff, DarmstadtCrossRefGoogle Scholar
  22. Kojda G, Hacker A, Noack E (1998) Effects of nonintermittent treatment of rabbits with pentaerithritol tetranitrate on vascular reactivity and superoxide production. Eur J Pharmacol 355 (1): 23–31PubMedCrossRefGoogle Scholar
  23. Kojda G, Stein D, Kottenberg E et al (1995) In vivo effects of pentaerithrityl-tetranitrate and isosorbide-5-mononitrate on the development of atherosclerosis and endothelial dysfunction in cholesterol-fed rabbits. J Cardiovasc Pharmacol 25 /5: 763–773PubMedCrossRefGoogle Scholar
  24. Lynch SM, Morrow JD, Roberts LJ, Roberts LJ 2nd et al (1994) Formation of noncyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro. J Clin Invest 93 (3): 998–1004PubMedCrossRefGoogle Scholar
  25. Macduff Sheehy A, Burson MA, Black SM (1998) Nitric oxide exposure inhibits endothelial NOS activity but not gene expression: a role for superoxide. AJP: Lung 274: L833 - L841Google Scholar
  26. Milone SD, Azevedo ER, Forster C et al (1998) The angiotensin II-receptor antagonist losartan does not prevent hemodynamic or vascular tolerance to nitroglycerin. J Cardiovasc Pharmacol 34 (5): 645–650CrossRefGoogle Scholar
  27. Morrow JD, Awad JA, Boss HJ et al (1992) Non-cyclooxygenase-derived prostanoids ( F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USAGoogle Scholar
  28. Morrow JD, Frei B, Longmire AW et al (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332 (18): 1198–1203PubMedCrossRefGoogle Scholar
  29. Morrow JD, Hill KE, Burk RF et al (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87 (23): 9383–9387PubMedCrossRefGoogle Scholar
  30. Münzel T, Li H, Mollnau H et al (2000) Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 86 (1): E7 - E12PubMedCrossRefGoogle Scholar
  31. Münzel T, Sayegh H, Freeman BA et al (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 95 (1): 187–194PubMedCrossRefGoogle Scholar
  32. Mutschler E, Geisslinger G, Kroemer HK, Schäfer-Korting M (2001) Mutschler Arzneimittelwirkungen. Wissenschaftliche Verlagsgesellschaft Stuttgart, 8. Auflage, S 558Google Scholar
  33. Ogonowski AA, Kaesemeyer WH, Jin L et al (2000) Effects of NO donors and synthase agonists on endothelial cell uptake of L-Arg and superoxide production. AJP-Cell 278: C136 - C143Google Scholar
  34. Patrono C, FitzGerald GA (1997) Isoprostandes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vas Biol 17 (11): 2309–2315CrossRefGoogle Scholar
  35. Ravandi A, Kuksis A, Shaikh NA (1999) Analysis of core aldehydes and isoprostane esters of phospholipids in plasma lipoproteins and human atheroma by electrospray mass spectrometry with single ion monitoring. Clin Chem 45 (6): A16Google Scholar
  36. Ravandi A, Kuksis A, Shaikh NA (1999) Glycated phosphatidylethanolamine promotes macrophage uptake of low density lipoprotein and accumulation of cholesterylesters and triacylglycerols. J Biol Chem 273: 16494–16500CrossRefGoogle Scholar
  37. Ravandi A, Kuksis A, Shaikh NA (2000) Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation: evidence of their presence in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 467–477PubMedCrossRefGoogle Scholar
  38. Romero JC, Reckelhoff JF (2000) Oxidative stress may explain how hypertension is maintained by normal levels of angiotensin II. Braz J Med Biol Res 33 (6): 653–660PubMedCrossRefGoogle Scholar
  39. Stalleicken D, Schröder H, Erdmann E (2001) Pentaerithrityltetranitrat and andere organische Nitrate, Therapierelevante Unterschiede bei koronarer Herzkrankheit. Arzneimitteltherapie 19: 115–121Google Scholar
  40. Stroes ES, van Faassen EE, van Londen GJ et al (1998) Oxygen radical stress in vascular disease: the role of endothelial nitric oxide synthase. J Cardiovasc Pharmacol 32 (Suppl 3): 14–21Google Scholar
  41. Stewart DD (1888) Remarkable tolerance to nitroglycerine. Philadelphia Polyclinic 12Google Scholar
  42. Takahashi K, Nammour TM, Fukunaga M et al (1992) Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 90 (1): 136–141PubMedCrossRefGoogle Scholar
  43. Watanabe H, Kakihana M, Ohtsuka Sb et al (1998) Randomized, double-blind, placebo-controlled study of the preventive effect of supplemental oral vitamin C on attenuation of development of nitrate tolerance. J Am Coll Cardiol 31 (6): 1323–1329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. D. Parker
  • T. Gori
  • U. Jurt

There are no affiliations available

Personalised recommendations