Analytical Methods

  • M. T. J. Murphy


Organic geochemists from varying backgrounds focus several specialities on the analysis of geological samples in order to reach conclusions on the nature of the components present in a rock or sediment, their fate since burial, and the original form of the material in a living organism. The complexity of compounds extracted from rock and sediment specimens requires the discipline of analytical chemistry with the assistance of modern instrumentation for good results and meaningful conclusions. The kinds and relative weights of various component classes in a geological sample provide the specific data on which the geochemist infers the history of a sample. Any valid conclusion depends upon the accuracy and reliability of the methods employed in the analysis. The geochemist attempts to discover how much is present before stating how come it is present in the sample. Often it is important to know the quantity of a component before any interpretation is made on how it is possible for the compound to be present in the specimen.


Rock Matrix Organic Geochemistry Procedure Blank Geological Sample Thin Layer Chromatogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morris, L., and B. Nicols: Chromatography of lipids. In: Chromatography, 2 ed. (E. Heftmann, ed.), p. 466–509. New York: Reinhold 1967.Google Scholar
  2. 2.
    Meinschein, W., and G. Kenny: Analyses of a chromatographic fractions of organic extracts of soils. Anal. Chem. 29, 1153–1161 (1957).CrossRefGoogle Scholar
  3. 3.
    Evans, E., G. Kenny, W. Meinschein, and E. Bray: Distribution of n-paraffins and separation of saturated hydrocarbons from Recent marine sediments. Anal. Chem. 29, 1858–1861 (1957).CrossRefGoogle Scholar
  4. 4.
    Hoeven, W. Van, J. R. Maxwell, and Melvin Calvin: Fatty acids and hydrocarbons as evidence of life processes in ancient sediments and crude oils. Geochim. Cosmochim. Acta 33, 877 (1969).CrossRefGoogle Scholar
  5. 5.
    Kwestroo, W., and J. Visser: Ultrapurification of hydrofluoric acid. Analyst 90, 297–298 (1965).CrossRefGoogle Scholar
  6. 6.
    Bitz, Sr. M. C., and B. Nagy: Ozonolysis of “polymer-type” material in coal, kerogen, and in the Orgueil meteorite: A preliminary report. Proc. Nat. Acad. Sci. U.S. 56, 1383–1390 (1966).CrossRefGoogle Scholar
  7. 7.
    Abelson, P.: Researches in geochemistry, vol. 2. New York: Wiley 1967.Google Scholar
  8. 8.
    Cummins, J., and W. Robinson: Normal and isoprenoid hydrocarbons isolated from oil-shalebitumen. J. Chem. Eng. Data 9, 304–307 (1964).CrossRefGoogle Scholar
  9. 9.
    Lid, A. T., E. Yoshh, and E. Kitatsiyi: Identification of normal paraffins, olefins, ketones, and nitriles from the Colorado shale oil. Anal. Chem. 38, 1224–1227 (1966).CrossRefGoogle Scholar
  10. 10.
    Ettre, L., and A. Zlatkis: The practice of gas Chromatograph. New York: Wiley 1967.Google Scholar
  11. 11.
    Heftmann, E. : Chromatography, 2nd ed. New York: Reinhold 1967.Google Scholar
  12. 12.
    Snyder, L.: Principles of adsorption chromatography. New York: Marcel Dekker 1968.Google Scholar
  13. 13.
    Stahl, E.: Thin layer chromatography. New York: Springer 1962.Google Scholar
  14. 14.
    Bobitt, J. : Thin layer chromatography. New York: Reinhold 1963.Google Scholar
  15. 15.
    Randerath, K. : Thin layer chromatography (D.D. LIBMAN, trans.). New York: Academic Press 1964.Google Scholar
  16. 16.
    Mangold, H. : Thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 38, 708–727 (1961).CrossRefGoogle Scholar
  17. 17.
    Thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 41, 762–777 (1964).CrossRefGoogle Scholar
  18. 18.
    Walton,H.: Techniques and applications of ion-exchange. In: Chromatography, 2nd ed. (E. Heftmann, ed.), p. 325–342. New York: Reinhold 1967.Google Scholar
  19. 19.
    Gelotte, B., and J. Porath: Gel filtration. In: Chromatography, 2nd ed.(E. Heftmann, ed.), p. 343–372. New York: Reinhold 1967.Google Scholar
  20. 20.
    Blumer, M., and W. Snyder: Porphyrins of high molecular weight in a Triassic oil shale: Evidence by gel permeation chromatography. Chem. Geol. 2, 35–45 (1967).CrossRefGoogle Scholar
  21. 21.
    Snyder, L.: Applications of linear elution adsorption chromatography to the separation and analysis of petroleum. Anal. Chem. 33, 1527–1534 (1961).CrossRefGoogle Scholar
  22. 22.
    Applications of linear elution adsorption chromatography to the separation and analysis of petroleum. Anal. Chem. 33, 1535–1538 (1961).CrossRefGoogle Scholar
  23. 23.
    Douglas,A., and G. Egunton: The distribution of alkanes. IN: Comparative phytochemistry (T. Swain, ed.), p. 57–77. New York: Academic Press 1966.Google Scholar
  24. 24.
    Egunton, G., P. Scott, T. Belsky, A. Burlingame, W. Richter, and M. Calvin: Occurence of isoprenoid alkanes in a Precambrian sediment. In: Advances in organic geochemistry (M. Louis, ed.), p. 41–74. New York: Pergamnon Press 1966.Google Scholar
  25. 25.
    Hamway, P., M. Cefola, and B. Nagy: Factors affecting the chromatographic analysis of asphaltic petroleum and Recent marine sediment organic matter. Anal. Chem. 34, 43–48 (1962).CrossRefGoogle Scholar
  26. 26.
    Kvenvolden, K., and J. Hayes: The solvent battle-solvent purification procedures used in organic geochemistry laboratories, Group for the analyses of carbon compounds in carbonaceous chondrites and the returned lunar sample meeting, Tempe, Arizona, Dec. 1968.Google Scholar
  27. 27.
    Commins, B.: A modified method for the determination of polycyclic hydrocarbons. Analyst 83, 386–389 (1958).CrossRefGoogle Scholar
  28. 28.
    Commins, Interim report on the study of techniques for the determination of polycyclic aromatic hydrocarbons in air. Nat. Cancer Inst. Monograph 9 (1961).Google Scholar
  29. 29.
    Morris, L. : Impregnated adsorbent chromatography. In: New Biochemical separations (A.T. James and L. J. MORRIS, eds.), p. 295–320. New York: Van Nostrand 1964.Google Scholar
  30. 30.
    Murphy, Sr. M., B. Nagy, G. Rouser, and G. Kritchevsky: Identification of elementary sulfur and sulfur compounds in lipid extracts by thin layer chromatography. J. Am. Oil Chem. Soc. 42, 475–480 (1965).CrossRefGoogle Scholar
  31. 31.
    — Analysis for sulfur compounds in lipid extracts from the Orguiel meteorite. J. Am. Oil Chem. Soc. 43, 189–196 (1966).CrossRefGoogle Scholar
  32. 32.
    Baron, M.: Analytical applications of inclusion compounds. IN: Physical methods in analytical chemistry, vol. 4 (W. Berl, ed.), p. 226–232. New York: Academic Press 1961.Google Scholar
  33. 33.
    Nicolaides, N., and F. Laves: Structural information of long-chain fatty material obtained by x-ray diffraction studies of single crystals. J. Am. Oil Chem. Soc. 40, 400 (1963).CrossRefGoogle Scholar
  34. 34.
    Murphy, Sr. M., A. Mccormick, and G. Eglinton: Perhydro-β-carotene in the Green River shale. Science 157, 1040–1042 (1967).CrossRefGoogle Scholar
  35. 35.
    Montgomery, D.: Thiourea adduction of alkylated polynuclear aromatic hydrocarbons and heterocyclic molecules. J. Chem. Eng. Data 8, 432–436 (1963).CrossRefGoogle Scholar
  36. 36.
    Thomas, T., and R. Mays: Separations with molecular sieves. In: Physical methods in chemical analysis, vol. 4 (W. Berl, ed.), p. 45–98. New York: Academic Press 1961.Google Scholar
  37. 37.
    Mair, B., and M. Shamaiengar: Fractionation of certain aromatic hydrocarbons with molecularsieve adsorbents. Anal. Chem. 30, 276–279 (1958).Google Scholar
  38. 38.
    Fenselau, C., and M. Calvin: Selectivity in zeolite occlusion of olefins. Nature 212, 889–891 (1966).CrossRefGoogle Scholar
  39. 39.
    Wiel, A. VAN DER: Molekularsiebe und Gas-Flüssigkeits-Chromatographie als Hilfsmittel zur Bestimmung der Konstitution von Paraffin. Erdoel, Kohle, Erdgas, Petrochem. 8, 632–636 (1965).Google Scholar
  40. 40.
    Devries,B.: Quantitative separations of higher fatty acid methyl esters by adsorption chromatography with silver nitrate, J. Am. Oil Chem. Soc. 40, 184 (1963).CrossRefGoogle Scholar
  41. 41.
    Privett, O., and E. Nickell: Preparation of highly purified fatty acids via liquid-liquid partition chromatography. J. Am. Oil Chem. Soc. 40, 189 (1963).CrossRefGoogle Scholar
  42. 42.
    Nagy, B., and Sr. M. C. Bitz: Long-chain fatty acids from the Orguiel meteorite. Arch. Biochem. Biophys. 101, 240–248 (1963).CrossRefGoogle Scholar
  43. 43.
    Gehrke, C., and D. Goerutz: Quantitative preparation of methyl esters of fatty acids for gas chromatography. Anal. Chem. 35, 76–80 (1963).CrossRefGoogle Scholar
  44. 44.
    Duron, O., and A. Nowontny: Microdetermination of long-chain carboxylic acids by transesterification with boron trifluoride. Anal. Chem. 39, 370–372 (1963).CrossRefGoogle Scholar
  45. 45.
    Vorbeck,M., L. Matttck, F. Lee, and C. Pederson: Preparation of methyl esters of fatty acids for gas-liquid chromatography. Anal. Chem. 33, 1512–1514 (1961).CrossRefGoogle Scholar
  46. 46.
    Leo, R., and P. Parker: Branched-chain fatty acids in sediments. Science 152, 649–650 (1966).CrossRefGoogle Scholar
  47. 47.
    Eglinton, G., A. Douglas, J. Maxwell, and J. Ramsay: Occurence of isoprenoid fatty acids in the Green River shale. Science 153, 1133–1135 (1966).CrossRefGoogle Scholar
  48. 48.
    Cooper, J.: Fatty acids in Recent and ancient sediments and petroleum reservoir waters. Nature 193, 744–746 (1962).CrossRefGoogle Scholar
  49. 49.
    Sweeley, C., R. Bentley, M. Makit A, and W. Wells: Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J. Am. Chem. Soc. 85, 2497–2507 (1963).CrossRefGoogle Scholar
  50. 50.
    Supina, W., R. Kruppa, and R. Henly: Dimethylsilyl derivatives in gas chromatography. J. Am. Oil Chem. Soc. 44, 74–76 (1967).CrossRefGoogle Scholar
  51. 51.
    Horning, M., E. Boucher, and A. Moss: The study of urinary acids and related compounds by gasphase analytical methods. J. Gas Chromatog. 5, 297–302 (1967).Google Scholar
  52. 52.
    Neumann, M., and P. Jossang: Emploi des complexes n en Chromatographie sur couche mince derives polynitres aromatiques et hydrocarbures aromatiques â noyaux condenses. J. Chromatog. 14, 280–283 (1964).CrossRefGoogle Scholar
  53. 53.
    Kucharczyk, N., J. Fohl, and J. Vymetal: Dunstschichtchromatographie von aromatischen Kohlenwasserstoffen und einigen heterocyclischen Verbindungen. J. Chromatog. 11, 55–61 (1963).CrossRefGoogle Scholar
  54. 54.
    Berg, A., and J. Lam: Separation of polycyclic aromatic hydrocarbons by thin layer chromatography on impregnated layers. J. Chromatog. 16, 157–166 (1964).CrossRefGoogle Scholar
  55. 55.
    Inscoe, M.: Photochemical changes in thin layer chromatographs of polycyclic aromatic hydrocarbons. Anal. Chem. 36, 250–255 (1964).CrossRefGoogle Scholar
  56. 56.
    Nagy, B., and Sr. M. C. Bitz: Analysis of bituminous coal by a combined method of ozonolysis, gas chromatography, and mass spectrometry. Anal. Chem. 39, 1310–1313 (1967).CrossRefGoogle Scholar
  57. 57.
    Colthup, N., L. Daly, and S. Wiberley: Infrared and Raman spectroscopy. New York: Academic Press 1964.Google Scholar
  58. 58.
    Jäffe, H., and M. Orchin: Theory and applications of ultraviolet spectroscopy. New York: Wiley 1962.Google Scholar
  59. 59.
    Schopf, J., K. Kvenvolden, and E. Barghoorn: Amino acids in Precambrian sediments: Anassay. Proc. Nat. Acad. Sci. U.S. 59, 639–646 (1968).CrossRefGoogle Scholar
  60. 60.
    Mair, B., R. Zalman, E.Eisenbraun, and A. Hordoysky: Terpenoid precursors of hydrocarbons from the gasoline range of petroleum. Science 154, 1339–1341 (1966).CrossRefGoogle Scholar
  61. 61.
    Commins, B.: Polycyclic aromatic hydrocarbons in carbonaceous metoerites. Nature 212, 273–274 (1966).CrossRefGoogle Scholar
  62. 62.
    Biemann, K.: Mass spectrometry organic chemical applications. New York: McGraw-Hill 1962.Google Scholar
  63. 63.
    Beynon, J., R. Saunders, and A. Wiluams: The mass spectra of organic molecules. New York:American Elsevier 1968.Google Scholar
  64. 64.
    Macleod, W., and B. Nagy: Deactivation of polar chemisorption in a fritted-glass molecular separator interfacing a gas Chromatograph with a mass spectrometer. Anal. Chem. 40, 841–842 (1968).CrossRefGoogle Scholar
  65. 65.
    Burungame, A., P. Haug, T. Belsky, and M. Calvin: Occurrence of biogenic steranes and pentacyclic triterpanes in an Eocene shale (52 million years) and in an early Precambrian shale (2.7 billion): A preliminary report. Proc. Nat. Acad. Sci. U.S. 54, 1406–1412 (1965).CrossRefGoogle Scholar
  66. 66.
    Modzeleski, V., W. Macleod, and B. Nagy : A combined gas chromatograph-mass spectrometric method for identifying n- and branched chain alkanes in sedimentary rocks. Anal. Chem. 40, 987–989(1968).Google Scholar
  67. 67.
    Eglinton, G., P. Scott, T. Belsky, A. Burungame, and M. Calvin: Hydrocarbons of biological origin from a one-billion year old sediment. Science 145, 263–264 (1964).CrossRefGoogle Scholar
  68. 68.
    Hills, I., E. Whitehead, D. Anders, J. Cummins, and W. Robinson: An optically active triterpane, gammacerane in Green River, Colorado oil shale bitumen. Chem. Commun. 752–753 (1966).Google Scholar
  69. 69.
    Hills, I., and E. Whitehead: Triterpanes in optically active petroleum distillates. Nature 209, 977–979 (1966).CrossRefGoogle Scholar
  70. 70.
    Hills, .I, —, G. Smith, and E. Whitehead: Optically active spirotriterpane in petroleum distillates. Nature 219, 243–246 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • M. T. J. Murphy
    • 1
  1. 1.Department of ChemistrySaint Joseph CollegeWest HartfordUSA

Personalised recommendations