Introduction to Sedimentology

  • B. J. Bluck


The fundamental factors controlling the form and content of sedimentary rocks are the location and extent of tectonism, the processes operating within the contemporary geographical environment, and post-depositional compaction and lithification. Investigations in sedimentology are normally ultimately directed to the elucidation of these factors.


Clay Mineral Source Rock Calcium Carbonate Carbonate Sediment Clastic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chorley, R. J.: Geomorphology and general systems theory. U.S. Geol. Surv. Profess. Papers 500-B (1962).Google Scholar
  2. 2.
    Petti John, F. J.: Sedimentary rocks. New York: Harper and Row 1957.Google Scholar
  3. 3.
    Krauskopf, K. B.: The geochemistry of silica in sedimentary environments. Ireland, H. A., ed. Soc. Econ. Paleontologists Mineralogists Spec. Publ. 7, 4–19 (1959).Google Scholar
  4. 4.
    Mackenzie, F. T., R. M. Garrels, O. P. Bricker, and F. Bicley: Silica in sea water: control by silica minerals. Science 155, 1404–1405 (1967).CrossRefGoogle Scholar
  5. 5.
    Alexander, G. B., W. M. Heston, and R. K. Iller: The solubility of amorphous silica in water. J. Phys. Chem. 58, 453–455 (1954).CrossRefGoogle Scholar
  6. 6.
    Iler, R. K.: Colloid chemistry of silica and silicates. Ithaca: Cornell University Press 1955.Google Scholar
  7. 7.
    Okamoto, G., T. Okura, and K. Goto: Properties of silica in water. Geochim. Cosmochim. Acta 12, 123–132 (1957).CrossRefGoogle Scholar
  8. 8.
    Degens, E. T.: Geochemistry of sediments. A brief survey. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1965.Google Scholar
  9. 9.
    Lewin, J. C.: The dissolution of silica from diatom walls. Geochim. Cosmochim. Acta 21, 182–198 (1961).CrossRefGoogle Scholar
  10. 10.
    Calvert, S. E.: Accumulation of diatomaceous silica in the sediments of the Gulf of California. Bull. Geol. Soc. Am. 77, 569–596 (1966).CrossRefGoogle Scholar
  11. 11.
    Bramlette, M. N.: The Monterey formation of California and the origin of siliceous rocks. U.S. Geol. Surv. Profess. Papers 212, 1–57 (1946).Google Scholar
  12. 12.
    Lowenstam, H. A.: Biologic problem relating to the composition and diagenesis of sediments. In: The earth sciences, problems and progress in current research (T.W.Donnelly, ed.). Chicago: University Press 1963.Google Scholar
  13. 13.
    Peterson, M. N. A., and C. C. von der Borch: Chert: modern inorganic deposition in a carbonate precipitating locality. Science 149, 1501–1503(1965).Google Scholar
  14. 14.
    James, H. L.: Sedimentary facies of iron formation. Econ. Geol. 49, 235–293 (1954).CrossRefGoogle Scholar
  15. 15.
    James, H. L.:Chemistry of iron rich sedimentary rocks. U.S. Geol. Surv. Profess. Papers 440-W (1966).Google Scholar
  16. 16.
    White, D. A.: The stratigraphy and structure of the Mesabi Range, Minnesota. Minn. Geol. Surv. Bull. 38 (1954).Google Scholar
  17. 17.
    Taylor, J. H.: The Mesozoic ironstones of England. Petrology of the Northampton sand iron stone formation. Mem. Geol. Surv. Gt. Brit. (1949).Google Scholar
  18. 18.
    Garrels, R. M.: Mineral equilibria at low temperature and pressure. New York: Harper and Row 1960.Google Scholar
  19. 19.
    Hough, J. L.: Fresh water environment of deposition of Precambrian banded iron formations. J. Sediment. Petrol. 28, 414–430 (1958).CrossRefGoogle Scholar
  20. 20.
    Govett, G. J. S.: Origin of banded iron formation. Bull. Geol. Soc. Am. 77, 1191 - 1212 (1966).Google Scholar
  21. 21.
    Huber, N. K.: The environmental control of sedimentary iron minerals. Econ. Geol. 53,123–140 (1958).CrossRefGoogle Scholar
  22. 22.
    Garrels, R. M., and C. L. Christ: Solutions, minerals, and equilibria. New York: Harper and Row 1965.Google Scholar
  23. 23.
    Love, L. G., and J. W. Murray: Biogenic pyrite in recent sediments of Christchurch Harbour, England. Am. J. Sci. 261, 433–448 (1963).CrossRefGoogle Scholar
  24. 24.
    Emery, K. O.: The sea of Southern California. New York: John Wiley & Sons, Inc. 1960.Google Scholar
  25. 25.
    Moretti, F. J.: Observations on limestones. J. Sediment. Petrol. 27, 282–292 (1957).CrossRefGoogle Scholar
  26. 26.
    Edwards, A. B., and G. Baker: Some occurences of supergene iron sulphides in relation to their environments of deposition. J. Sediment. Petrol. 21, 34–46 (1951).Google Scholar
  27. 27.
    Andel, T. van, and H. Postma: Recent sediments of the Gulf of Paria. Reports of Orinoco Shelf Expedition, Amsterdam, 1954.Google Scholar
  28. 28.
    Caspers, H.: Black sea and sea of Azov. Mem. Geol. Soc. Am. 67, 801 - 890 (1957).Google Scholar
  29. 29.
    Dunham, K. C.: Black shale, oil and sulphide ore. Advan. Sci. 18, 73 (1962).Google Scholar
  30. 30.
    Hallimond, A. D.: Bedded iron ores of England and Wales: petrography and chemistry. Mem. Geol. Survey Gt. Brit. (1925).Google Scholar
  31. 31.
    Cayeux, L.: Les minerals de fer oolitique de France. II. Minerals de fer secondaires. Paris: Imprimerie Nationale 1922.Google Scholar
  32. 32.
    Alling, H. L.: Diagenesis of the Clinton hematite ores of New York. Bull. Geol. Soc. Am. 58, 991–1018(1947).Google Scholar
  33. 33.
    Stose, G. W.: Notes on the origin of Clinton hematite ores. Econ. Geol. 19, 405–411 (1924).CrossRefGoogle Scholar
  34. 34.
    Carrol, D.: Role of clay minerals in the transportation of iron. Geochim. Cosmochim. Acta 14, 1–27 (1958).CrossRefGoogle Scholar
  35. 35.
    McConnell, D.: The petrography of rock phosphates. J. Geol. 58, 16–23 (1950).CrossRefGoogle Scholar
  36. 36.
    Lowell, W. R.: Phosphatic rocks in Deer Creek-Wells Canyon Area, Idaho. U. S. Geol. Surv. Bull. 982-A, 52pp. (1952).Google Scholar
  37. 37.
    McConnel, D.: The problem of the carbonate apatites IV structural substitutions involving CO2 and OH. Bull. Soc. Franc. Mineral. Crist. 75, 428–445 (1952).Google Scholar
  38. 38.
    Kazakov, A. V.: The phosphorite facies and the genesis of phosphorites, in Geological Investigations of Agricultural Ores. Trans. Sci. Inst. Fertilizers and Insecto-fungicides 142,95–113 (1937).Google Scholar
  39. 39.
    Bushinsky, G. I.: Structure and origin of the phosphorites of the U.S.S.R. J. Sediment. Petrol. 5, 81–92 (1935).CrossRefGoogle Scholar
  40. 40.
    Carozzi, A. V.: Microscopic sedimentary petrography. New York: John Wiley & Sons, Inc. 1960.Google Scholar
  41. 41.
    Goldberg, E. D., and R. H. Parker: Phosphatized wood from the Pacific sea floor. Bull. Geol. Soc. Am. 71, 631–632(1960).Google Scholar
  42. 42.
    Bluck, B. J.: Petrography of Devonian phosphates of Indiana. 111. Acad. Sci. Trans. 59, 43–47 (1966).Google Scholar
  43. 43.
    Pevear, D. R.: The estuarine formation of United States coastal plain phosphorite. Econ. Geol. 61, 251–256(1966).Google Scholar
  44. 44.
    Stewart, F. H.: Marine evaporites. U.S. Geol. Surv. Profess. Papers 440 (1963).Google Scholar
  45. 45.
    Briggs, L. I.: Evaporite facies. J. Sediment. Petrol. 28,46–56 (1958).Google Scholar
  46. 46.
    Braitsch, O.: Mineral Paragenesis und Petrologie der Stassfurtsalze in Revershausen. Kali Stein salz 3, 1 - 14 (1960).Google Scholar
  47. 47.
    Bersticker, A. C., K. E. Hoekstra, and J.F.Hall: Symposium on Salt. The Northern Ohio Geol. Soc, Inc. (1963).Google Scholar
  48. 48.
    Borchert, H, and R. O. Muir: Salt deposits. London: D. van Nostrand Co, Ltd. 1964.Google Scholar
  49. 49.
    Hollingworth, S. E.: Evaporites. Proc. Yorkshire Geol. Soc. 27,192–198 (1948).CrossRefGoogle Scholar
  50. 50.
    Stewart, F. H.: The petrology of the evaporites of the Eskdale No. 2 Boring, East Yorkshire. Mineral Mag. 29, 445–475, 557–572 (1951).Google Scholar
  51. 51.
    Stewart, F. H.: Permian evaporites and associated in Texas and New Mexico compared with those of Northern England. Proc. Yorkshire Geol. Soc. 29, 185–235 (1954).CrossRefGoogle Scholar
  52. 52.
    Posnjak, E.: Deposition of calcium sulphate from sea water. Am. J. Sci. 238, 559 - 568 (1940).Google Scholar
  53. 53.
    Murray, R. C.: Origin and diagenesis of gypsum and anhydrite. J. Sediment. Petrol. 34, 512–523 (1964).Google Scholar
  54. 54.
    Packham, G. H, and K. A. W. Crook: The principle of diagenetic facies and some of its implications. J. Geol. 68, 392–407 (1960).CrossRefGoogle Scholar
  55. 55.
    Dapples, E. C.: Behavior of silica in diagenesis (Ireland, H. A, ed.). Soc. Econ. Paleontologists Mineralogists Spec. Publ. 7, 36–54 (1959).Google Scholar
  56. 56.
    Burst, J. R.: “Glauconite” pellets: their mineral nature and applications to stratigraphic interpretation. Bull. Am. Assoc. Petrol. Geologists 42, 310–327 (1958).Google Scholar
  57. 57.
    Galliher, E. W.: Glauconite genesis. Bull. Geol. Soc. Am. 46, 1351 - 1366 (1935).Google Scholar
  58. 58.
    Peterson, M. N. A, C. C. von der Borch, and G. S. Bien: Growth of dolomite crystals. Am. J. Sci. 264, 257–272(1966).Google Scholar
  59. 59.
    Whitehouse, U. G, and R. S. McCarter: Diagenetic modification of clay mineral types inartificial sea water. Clays and Clay Minerals (Proc. 5th Nat. Conf.), 81–119 (1958).Google Scholar
  60. 60.
    Grim, R. E, and W. D. Johns: Mineral investigations in the Northern Gulf of Mexico. Clays and Clay Minerals (Proc. 2nd Nat. Conf.), 81 - 103 (1954).Google Scholar
  61. 61.
    Powers, M. C.: Clay diagenesis in the Chesapeake Bay area. Clays and Clay Minerals (Proc. 2nd Nat. Conf.), 68–80(1954).Google Scholar
  62. 62.
    Carrol, D, and H. C. Starkey: Effects of seawater on clay minerals. Clays and Clay Minerals (Proc. 7th Nat. Conf.), 80- 101 (1960).Google Scholar
  63. 63.
    Emery, K. O, and S. C. Rittenberg: Early diagenesis of California basin sediments in relation to origin of oil. Bull. Am. Assoc. Petrol. Geologists 36, 735–806 (1952).Google Scholar
  64. 64.
    Siever, R, K.C. Beck, and R. A. Berner: Composition of interstitial waters of modern sediments. J. Geol. 73, 39–73 (1965).CrossRefGoogle Scholar
  65. 65.
    Shepard, F.P, and D.G. Moore: Central Texas coast sedimentation: characteristics of sedimentary environment, recent history and diagenesis. Bull. Am. Assoc. Petrol. Geologists 39, 1463–1539(1955).Google Scholar
  66. 66.
    Bordovskiy, O. K.: Transformation of organic matter in bottom sediments and its early diagenesis. Marine Geol. 3, 83–114 (1965).CrossRefGoogle Scholar
  67. 67.
    Zobell, C. E.: Studies on redox potential of marine sediments. Bull. Am. Assoc. Petrol. Geologists 30, 477–513 (1946).Google Scholar
  68. 68.
    Limberg-Ruban, Ye. L.: The quantity of bacteria in the water and in bottom material in the North Western Pacific. Issled. Dalhevost. Morey SSSR 3 (1952) [in Russian].Google Scholar
  69. 69.
    DeSitter, L. U.: Diagensis of oil field brines. Bull. Am. Assoc. Petrol. Geologists 31, 2030–2040 (1947).Google Scholar
  70. 70.
    Oppenheimer, C. H.: Bacterial activity in marine sediments. Geochemical Symposium, Gostoptekhizdat, Moscow 1960.Google Scholar
  71. 71.
    Bredehoeft, J. D. et al.: Possible mechanism for concentration of brines in sub-surface formations. Bull. Am. Assoc. Petrol. Geologists 47, 257–269 (1963).Google Scholar
  72. 72.
    Thomson, A.: Pressure solution and porosity (Ireland, H. A., ed.). Silica in Sediments. Soc. Econ. Paleontologists and Mineralogists. Spec. Publ. 7, 185 (1959).Google Scholar
  73. 73.
    Siever, R.: Siever solubility, 0–200° C and the diagenesis of siliceous sediments. J. Geol. 70, 127–150(1962).CrossRefGoogle Scholar
  74. 74.
    Heald, M. T.: Cementation of Simpson and St. Peter sandstones in parts of Oklahoma, Arkansas and Missouri. J. Geol. 64, 16–30 (1956).CrossRefGoogle Scholar
  75. 75.
    Coombs, D. S.: The Nature and alteration of some Triassic sediments from Southland, New Zealand. Trans. Roy. Soc. New Zealand 82, 65–109 (1954).Google Scholar
  76. 76.
    Chave, K. E.: Evidence on history of sea water from chemistry of sub-surface waters of ancient basins. Bull. Am. Assoc. Petrol. Geologists 44, 357–370 (1960).Google Scholar
  77. 77.
    Burst, J. F.: Post-diagenetic clay mineral environmental relationships in the Gulf Coast Eocene. Clays Clay Minerals, Proc. 6th Nat. Conf. 327–341 (1959).Google Scholar
  78. 78.
    Rodgers, J.: Distributions of marine carbonate sediments: a review. Regional aspects a carbonate deposition. A Symposium with discussion S. E. P. M. (R. J. le Blanc and Julia G. Breeding, eds.) (1957).Google Scholar
  79. 79.
    Folk, R. L.: Spectral Subdivision of limestones. Classification of Carbonate rocks. Mem. I. Am. Assoc. Petrol. Geologists, Tulsa 62, 62–84 (1962).Google Scholar
  80. 80.
    Newell, N. D. et al.: The Permian Reef Complex of Guadalupe Mountains Region, Texas and New Mexico. San Francisco: W. H. Freeman & Co. 1953.Google Scholar
  81. 81.
    Henson, F. R. S.: Cretaceous and Tertiary reef formations and associated sediments in Middle East. Bull. Am. Assoc. Petrol. Geologists 34, 215–238 (1950).Google Scholar
  82. 82.
    Lowenstam, H. A.: Niagran reefs of the Great Lakes Area. J. Geol. 58, 430–487 (1950).CrossRefGoogle Scholar
  83. 83.
    Hadding, A.: The pre-quaternary sedimentary rocks of Sweden, VI, reef limestones. Medd. Lunds Geol. Mineral. Inst. 2, 37, 137p (1941).Google Scholar
  84. 84.
    Young, R. B.: A comparison of certain stromatolitic rocks in the dolomite series with modern algal sediments in the Bahamas. Trans. Proc. Geol. Soc. S. Africa 37, 153–162 (1934).Google Scholar
  85. 85.
    Cloud, P. E.: Facies relationships of organic reefs. Bull. Am. Assoc. Petrol. Geologists 36, 2125–2149(1952).Google Scholar
  86. 86.
    Kuenen, Ph. H.: Marine geology. New York: John Wiley & Sons, Ltd. 1950.Google Scholar
  87. 87.
    Arkell, W. J.: The Jurassic System in Great Britain. Oxford 1933.Google Scholar
  88. 88.
    Stockdale, P. B.: Bioherms in the Borden Group of Indiana. Bull. Geol. Soc. Am. 42, 707–718 (1931).Google Scholar
  89. 89.
    Lees, A.: The structure and origin of the Waulsortian (Lower Carboniferous) reefs of W. Eire. Phil. Trans. Roy. Soc. London Ser. B 247, 483–531 (1964).CrossRefGoogle Scholar
  90. 90.
    Schwarzacher, W.: Petrology and structure of some Lower Carboniferous reefs in North Western Ireland. Bull. Am. Assoc. Petrol. Geologists 45, 1481–1503 (1961).Google Scholar
  91. 91.
    Cotter, E.: Waulsortian-type carbonate banks in the Mississippian lodgepole formation of Central Montana. J. Geol. 73, 881–888 (1965).CrossRefGoogle Scholar
  92. 92.
    Wolf, K. H.: “Grain-diminution” of algal colonies to micrite. J. Sediment. Petrol. 35, 420–427 (1965).CrossRefGoogle Scholar
  93. 93.
    Shearman, D. J., and P. A. de Skipwith: Organic matter in recent and ancient limestone and its role in diagenesis. Nature 208, 1310 (1965).CrossRefGoogle Scholar
  94. 94.
    Black, M.: The algal sedimentation of Andros Island, Bahamas. Phil. Trans. Roy. Soc. London, Ser. B 222, 165–192 (1933).CrossRefGoogle Scholar
  95. 95.
    Monty, C.: Recent algal stromatolites in the windward lagoon, Andros Island, Bahamas. Ann. Soc. Geol. Belg. Mem. 88, 269–276 (1964–65).Google Scholar
  96. 96.
    Logan, B. W., R. Rezak, and R. N. Ginsburg: Classification and environmental significance of algal stromatolites. J. Geol. 72, 68–83 (1964).CrossRefGoogle Scholar
  97. 97.
    Rezak, R.: Stromatolites of the belt series in Glacier National Park and vicinity, Montana. U.S. Geol. Surv. Profess. Papers 294-D (1957).Google Scholar
  98. 98.
    Ginsburg, R. N.: Early diagenesis and lithification of shallow-water carbonate sediments in S. Florida. Regional aspects of carbonate deposition S.E.M.P. Spec. Publ. 5, 80–100(1957).Google Scholar
  99. 99.
    Mawson, Sir Douglas: Some South Australian algal limestones in process of formation. Quart. J. Geol. Soc. London 85, 613–623 (1929).CrossRefGoogle Scholar
  100. 100.
    Hommeril, P., and M. Rioult: Etude de la fixation des sediments meubles par deux algues marins: rhodothamniella floridula (Dillwyn) J. Feldm et microcoleus chtonoplastes thur. Marine Geol. 3, 131–155 (1965).CrossRefGoogle Scholar
  101. 101.
    Bluck, B. J.: Sedimentation of Middle Devonian Carbonates, South Eastern Indiana. J. Sediment. Petrol. 35, 656–682 (1965).Google Scholar
  102. 102.
    Newell, N. D., E. G. Purdy, and J.Imbrie: Bahamian oolitic sand. J. Geol. 68, 481–497 (1960).CrossRefGoogle Scholar
  103. 103.
    Carozzi, A. V.: Contribution a l’etude des proprietes geometriques des oolithes — l’example du Grand Lac Sale. Bull. Instn. National Genevois 58, 1–51 (1957).Google Scholar
  104. 104.
    Conrad, N. A.: Observation on coastal erosion in Bermuda and measurements of the boring rate of the Ponge, Cliono, Campa. Limnol. Oceanog. 2, 92–108 (1966).Google Scholar
  105. 105.
    Cloud, P. E.: Environment of calcium carbonate deposition west of Andros Island, Bahamas. U.S. Geol. Surv. Profess. Papers 350, 1–138.Google Scholar
  106. 106.
    Wells, A. J., and L.V. Illing: Present day precipitation of calcium carbonate in the Persian Gulf. Dev. in Sed. Vol. 1 Deltaic and Shallow Marine Deposits (Van Straaten, ed.) (1964).CrossRefGoogle Scholar
  107. 107.
    Lowenstam, H. A., and S. Epstien: On the origin of sedimentary aragonite needles of the Great Bahama Bank. J. Geol. 65, 364–375 (1957).CrossRefGoogle Scholar
  108. 108.
    Broecker, W. S., and T. Takahashi: Calcium carbonate precipitation on the Bahama Banks. J. Geophys. Res. 71, 1575–1602 (1966).CrossRefGoogle Scholar
  109. 109.
    Illing, L.: Bahaman calcarious sands. Bull. Am. Assoc. Petrol. Geologists 38, 1–95 (1954).Google Scholar
  110. 110.
    Friedman, G. M.: Early diagenesis and lithification in carbonate sediments. J. Sediment. Petrol. 34, 777–813 (1964).Google Scholar
  111. 111.
    Fyfe, W. S., and J. L. Bischoff: The calcite-aragonite problem. Dolomitization and Limestone diagenesis. A Symposium (L. C. Prey and R. C. Murray, eds.). S. E. P. M. Spec. Publ. 13, 3–13 Tulsa (1965).Google Scholar
  112. 112.
    Gevirtz, J. L., and G. M. Friedman: Deep sea carbonate sediments of the Red Sea, and their implication on marine lithification. J. Sediment. Petrol. 36, 143–151 (1966).Google Scholar
  113. 113.
    Bathurst, R. G. C.: The replacement of aragonite by calcite in the molluscan Shell wall. Approaches to Paleoecology (J. Imbrie and N. D. Newell, eds.). New York: John Wiley & Sons, Ltd. 1964.Google Scholar
  114. 114.
    Stoddart, D. R., and J. R. Cann: Nature and origin of beach rock. J. Sediment. Petrol. 35, 243–273 (1965).CrossRefGoogle Scholar
  115. 115.
    Bathurst, R. G. C.: Diagenetic fabrics in some British Dinantian limestones. Liverpool Manchester Geol. J. 2, 11–36 (1958).Google Scholar
  116. 116.
    Beals, F. W.: Diagenesis in pelleted limestones. Dolomitization and limestone diagenesis. A Symposium (L.C. Pay and R.C. Murray, eds.). S.E.P.M. Spec. Publ. 13, Tulsa (1965).Google Scholar
  117. 117.
    Gross, M. G.: Variations in the 180/160 and 13C/12C ratios of diagenetically altered limestones in the Bermuda Island. J. Geol. 72, 170–194 (1964).CrossRefGoogle Scholar
  118. 118.
    Berner, R. A.: Chemical diagenesis of some modern carbonate sediments. Am. J. Sci. 264, 1–36 (1966).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • B. J. Bluck
    • 1
  1. 1.University of GlasgowGlasgowScotland

Personalised recommendations