Advertisement

Optimierung pp 197-237 | Cite as

Auswahl von theoriebezogenen Veröffentlichungen

  • Kurt Littger

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

VIII.1 Operations Research Verfahren der Optimierung

  1. 1.
    Hu, T. C. and Robinson, S. M. (Eds.): Mathematical Programming, Academic Press, New York, 1973zbMATHGoogle Scholar
  2. 2.
    Foulds, L. R.: Optimization Techniques, Springer, New York, 1981zbMATHGoogle Scholar
  3. 3.
    Hillier, F. S. and Lieberman, G. J.: Introduction to Operations Research, Holden-Day, San Francisco, 1967zbMATHGoogle Scholar
  4. 4.
    Gaede, K.-W. und Heinhold, J.: Grundzüge des Operations Research, Teil 1, Hanser Verlag, München, 1976zbMATHGoogle Scholar
  5. 5.
    Neumann, K.: Operations Research Verfahren, Band 1 (1975), Band 2 (1977), Band 3 (1975), Karl Hanser Verlag, MünchenGoogle Scholar
  6. 6.
    Müller-Merbach, H.: Operations Research, Verlag Franz Vahlen GmbH, Berlin und Frankfurt, 1969Google Scholar
  7. 7.
    Collatz, L. und Wetterling, W.: Optimierungsaufgaben, Springer, Berlin, 1966zbMATHGoogle Scholar
  8. 8.
    Riggs, J. L. and Inoue, M. S.: Introduction to Operations Research and Management Science, McGraw-Hill, New York, 1975Google Scholar
  9. 9.
    Saaty, T. L.: Mathematical Methods of Operations Research, McGraw-Hill, New York, 1959zbMATHGoogle Scholar
  10. 10.
    Moore, P. G. and Hodges, S. D. (Ed.): Programming for Optimal Decisions, Penguin Modern Management Readings, Middlesex, 1970Google Scholar
  11. 11.
    Williams, H. P.: Model Building in Mathematical Programming, John Wiley, New York, Second Edition, 1984Google Scholar
  12. 12.
    Churchman, C. W., Ackoff, R. L., and Arnoff, E. L.: Operations Res., Eine Einf. in die Unternehmensforschung, Oldenbourg, Wien, 1961Google Scholar
  13. 13.
    Ackoff, R. L.: Progress in Operations Research, Vol. 1, John Wiley, New York, 1961Google Scholar
  14. 14.
    Sasieni, M. W., Yaspan, A. and Friedman, L.: Operations Research, Methods and Problems, Wiley, New York, 1959zbMATHGoogle Scholar
  15. 15.
    Nieswandt, A.: Operations Research, 2. Auflage, NWB Verlag, Herne und Berlin, 1984Google Scholar
  16. 16.
    Bachem, A., Korte, B., and Grötschel, M. (Editors): Mathematical Programming—The State of the Art. Proc. 11th Int. Symp. on Math. Progr., Held 1982 at the Univ. of Bonn, Springer, Berlin, 1983Google Scholar
  17. 17.
    Aronson, J. E. and Thompson, G. L.: Survey on Forward Methods in Math. Programming, Large Scale Systems, Vol. 7, No. 1, 1984Google Scholar
  18. 18.
    Gill, P. E., Murray, W., and Wright, M. H.: Practical Optimization, Academic Press, London, 1981zbMATHGoogle Scholar
  19. 19.
    Landry, M., Malouin, J.-L., and Oral, M.: Model Validation in Operations Research, Eur. J. Oper. Res., Vol. 14, No. 3, 1983Google Scholar
  20. 20.
    Müller-Merbach, H.: Optimale Reihenfolgen, Springer, 1970Google Scholar
  21. 21.
    Gal, T.: Betriebliche Entscheidungsprobleme, Sensitivitätsanalyse und parametrische Programmierung, Springer, Berlin, 1973zbMATHGoogle Scholar
  22. 22.
    Dinkelbach, W.: Sensitivitätsanalysen und parametrische Programmierung, Springer, Berlin, 1969zbMATHGoogle Scholar
  23. 23.
    Kuenzi, H. P.: Numerische Methoden der mathematischen Optimierung mit ALGOL und FORTRAN Programmen, Teubner, 1966Google Scholar
  24. 24.
    Blum, E. und Oettli, W.: Mathematische Optimierung—Grundlagen und Verfahren, Springer, Berlin, 1975zbMATHGoogle Scholar
  25. 25.
    Woolsey, R. E. D. and Swanson, H. S.: Oper. Res. for Immediate Application-A Quick and Dirty Manual, Harper and Row, New York, 1975Google Scholar
  26. 26.
    Teichroew, D.: An Introduction to Management Science Deterministic Models, Wiley, New York, 1964zbMATHGoogle Scholar
  27. 27.
    Hertz, D. B. and Eddison, R. T. (Eds.): Progress in Operations Research, Vol. II, Wiley, New York, 1964zbMATHGoogle Scholar
  28. 28.
    Aronofsky, J. S. (Ed.): Progress in Operations Research, Vol. III, OR and the Computer, Wiley, New York, 1969Google Scholar
  29. 29.
    Graves, R. L. and Wolfe, P. (Eds.): Recent Advances in Mathematical Programming, McGraw-Hill, New York, 1963zbMATHGoogle Scholar
  30. 30.
    Ackoff, R. L. and Sasieni, M. W.: Operations Research, Grundzuege der Operationsforschung, Akademie-Verlag, Berlin, 1970Google Scholar
  31. 31.
    Beale, E. M. L.: Mathematical Programming in Practice, John Wiley, New York, 1968Google Scholar
  32. 32.
    Beale, E. M. L. (Ed.): Applications of Mathematical Programming Techniques, Engl. Univ. Press, London, 1970Google Scholar
  33. 33.
    Charnes, A. and Cooper, W. W.: Management Models and Industrial Applications of Linear Progr., John Wiley, New York, 1961Google Scholar
  34. 34.
    Balinski, M. L. and Lemarechal, C.: Mathematical Programming in Use, North Holland, Amsterdam, 1978Google Scholar
  35. 35.
    Moore, P. G. and Hodges, S. D. (Editor): Programming for Optimal Decisions, Penguin, 1970Google Scholar
  36. 36.
    Gorstko, A.: Mathematical Models and Optimal Planning, Nauka, Novosibirsk, 1966Google Scholar
  37. 37.
    Ackoff, R. L. und Rivett, P.: Industrielle Unternehmensforschung, München, 1966Google Scholar
  38. 38.
    Arnoff, E. L. and Sengupta, S. S.: Mathematical Programming, in VIII.1. 1–13, 1961Google Scholar
  39. 39.
    Balakrishnan, A. V. and Neustadt, L. W. (Eds.): Computing Methods in Optimization Problems, Proceedings of a Conf. Held at the Univ. of California, Los Angeles, 1964, Academic Press, New York, 1964zbMATHGoogle Scholar
  40. 40.
    Balakrishnan, A. V. and Zadeh, I. A. (Eds.): Computing Methods in Optimization Problems, Papers Presented at the 2nd Intern. Conf. on Comp. Methods, San Remo, Italy, 1968, Springer, Berlin, 1968Google Scholar
  41. 41.
    Müller-Merbach, H.: Operations Research Fibel für Manager, Moderne Industrie, München, 1971Google Scholar
  42. 42.
    Vajda, S.: Mathematical Programming, Addison Wesley, London, 1961zbMATHGoogle Scholar
  43. 43.
    Vajda, S.: Planning by Mathematics, Pitman, London, 1969Google Scholar
  44. 44.
    Vajda, S.: Readings in Math. Programming, Wiley, New York, 1962Google Scholar
  45. 45.
    House, W. C. (Ed.): Operations Research, an Introduction to Modern Applications, Auerbach, Princeton, N. J., 1972Google Scholar
  46. 46.
    Stahlknecht, P.: Operations Research, Vieweg, Braunschweig, 1972Google Scholar
  47. 47.
    Stahlknecht, P.: Operation Research, ein Leitfaden für den Praktiker, Elektronische Datenverarbeitung, BeihefteGoogle Scholar
  48. 48.
    Leitmann, G.: Optimiz. Techniques, Academic Press, New York, 1962Google Scholar
  49. 49.
    Wagner, H. M.: Principles of Operations Research, Prentice-Hall, Englewood Cliffs, N. J., 1969Google Scholar
  50. 50.
    Whitehouse, G. E. and Wechsler, B. L.: Applied Operations Research-A Survey, Wiley, New York, 1976zbMATHGoogle Scholar
  51. 51.
    Pun, L.: Abriss der Optimierungspraxis, Oldenbourg, München, 1974zbMATHGoogle Scholar
  52. 52.
    Lasdon, L. S.: Optimization Theory for Large Systems, Macmillan, New York, 1972Google Scholar
  53. 53.
    Koch, G. und Mund, K.: Math. Planungsverfahren, Hanser, München, 1981Google Scholar
  54. 54.
    Dueck, W. und Bliefernich, M. (Eds.): Operationsforschung, Mathematische Grundlagen, Methoden und Modelle, Band 1–3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1971–1972Google Scholar
  55. 55.
    Fandel, G., Fischer, D., Pfahl, H.-C. und Schuster, K.-P. (Eds.): Operations Research Proceedings, DGOR Annual, Meeting, Essen 1980, Physica, Würzburg, 1981Google Scholar
  56. 56.
    Schwarze, J., Dobschuetz, L. und Fleischmann, B. (Eds.): Operations Research Proc., DGOR Annual Meeting, 1979, Physica, Würzburg, 1980Google Scholar
  57. 57.
    Ohse, D., Esprester, A., Kuepper, H.-U., Staehly, P. und Steckhan, H. (Eds.): Oper. Res. Proceedings, DGOR Annual Meeting, 1984, Springer, Berlin, 1985zbMATHGoogle Scholar
  58. 58.
    Brockhoff, K., Dinkelbach, W. und Kall, P. (Eds.): Operations Research Proceedings, DGOR Annual Meeting, 1977, Physica, Würzburg, 1978Google Scholar
  59. 59.
    Jacob, H., Pressmar, D. B., Todt, H. und Zimmermann, H.-J. (Eds.): Proceedings in Operations Research 2 DGOR Annual Meeting 1972, Physica, Würzburg, 1973zbMATHGoogle Scholar
  60. 60.
    Kaufmann, A. et Faure, R.: Invitation a la recherche operationelle, Dunod, Paris, 1968Google Scholar
  61. 61.
    Kaufmann, A.: Methodes et modeles de la recherche operationelle, Dunod, Paris, 1962Google Scholar
  62. 62.
    Darby-Dowman, K., Lucas, C., Mitra, G., and Yadegar, J.: Linear, Integer, Separable and Fuzzy Programming Problems—A Unified Approach Towards Reformulation, Operations Research, Vol. 39, No. 2, 1988, 161–171zbMATHGoogle Scholar
  63. 63.
    Kilian, R. und Matthies, W.: Mathematische Methoden in Organisation und Planung, VEB Verlag Technik, Berlin, 1965Google Scholar
  64. 64.
    Barritt, M. M. and Wishart, D. (Eds.): Proceedings in Computational Statistics (COMPSTAT 80), Physica Verlag, Wien, 1980Google Scholar
  65. 65.
    Lawrence, J. (Ed.): Proceedings of the 5th International Conference on Operations Research, Tavistock, London, 1969Google Scholar
  66. 66.
    Alarcon, E. and Brebbia, C. (Eds.): Applied Numerical Modeling, Pentech Press, London, 1979Google Scholar
  67. 67.
    Jacobs, D. A. H. (Ed.): The State-of-the-Art in Numerical Analysis, Academic Press, London, 1977Google Scholar
  68. 68.
    Brearley, A. L., Mitra, G. and Williams, H. P.: Analysis of Mathematical Programming Problems Prior to Applying the Simplex Algorithm, Math. Progr., Vol. 8, 1975, 54–83MathSciNetzbMATHGoogle Scholar
  69. 69.
    Karwan, M. H., Lodi, V., Telgen, J. and Zionts, S.: Redundancy in Math. Progr.—A State-ofthe-Art Survey, Springer, New York, 1983Google Scholar
  70. 70.
    Guignard, M.: Conditions d’optimalite et dualite en programmation mathematique, Universite de Lille, Laboratoire de Calcul, These de Doctorat de Specialite, 1967Google Scholar
  71. 71.
    Judice, J. J. and Mitra, G.: Reformulation of Mathematical Programming Problems as Linear Complementarity Problems and Investigation of their Solution Methods, J. Optim. Theory and Appl., Vol. 57, No. 1, 1988, 123–149MathSciNetzbMATHGoogle Scholar
  72. 72.
    Feichtinger, G.: Anwendung des Maximumprinzips im Operations Research, OR Spektrum, Vol. 4, 1982, 171–190 und 195–212Google Scholar
  73. 73.
    Sethi, S. P.: A Survey of Management Science Applications of the Deterministic Maximum Principle, TIMS Studies in Mgmt. Sciences, No. 9, North-Holland, Amsterdam, 1978, 33–67Google Scholar
  74. 74.
    Kamien, M. I. and Schwartz, N. L.: Dynamic Optimization, North Holland, New York, 1981Google Scholar
  75. 75.
    Pontrjagin, L. S., Boltjanskij, V. G. and Gamkrelidze, R. V.: Mathematische Theorie optimaler Prozesse, R. Oldenbourg, München, 1964Google Scholar
  76. 76.
    Canon, M. D.: Monoextremal Representations of a Class of Minimax Problems, Mgmt. Sci., Vol. 15, No. 5, 1969, 228–238MathSciNetzbMATHGoogle Scholar
  77. 77.
    Moore, R. E. and Ratschek, H.: Inclusion Functions and Global Optimization II, Math. Progr., Vol. 41, No. 3, 1988, 341–356MathSciNetzbMATHGoogle Scholar
  78. 78.
    Dixon, L. C. W. and Szego, G. P. (Editors): Toward Global Optimization, North Holland, Amsterdam, 1978Google Scholar
  79. 79.
    Orban, P.: Über ein Verfahren zur globalen Optimierung, Wiss. Zeitschr. Techn. Hochschule Magdeburg, Vol. 18, No. 4, 1974, 369–373Google Scholar
  80. 80.
    Neider, J. A. and Mead, R.: A Simplex Method for Function Minimization, Comput. J., Vol. 7, 1965, 308–313Google Scholar
  81. 81.
    Kaplan, S.: Applications of Programs with Maximin Objective Function to Problems of Optimal Resource Allocation, Oper. Res., Vol. 22, No. 4, 1974Google Scholar
  82. 82.
    Gupta, R. and Arora, S. R.: Programming Problems with Maximin Objective Function, Zeitschr. für Oper. Res., Vol. 22, 1978, 69–72MathSciNetzbMATHGoogle Scholar
  83. 83.
    Stern, M.: Mathematics for Management, Prentice Hall, Englewood Cliffs, New Jersey, 1963Google Scholar
  84. 84.
    Cheney, L. K., Ullman, R. J. and Kawarantani, T. T.: The Significance of Mathematical Programming in the Business World, RAND Symposium on Math. Programming 1959, RAND Report R-351, 1960Google Scholar
  85. 85.
    Fletcher, R. (Ed.): Optimization, Academic Press, London, 1969zbMATHGoogle Scholar
  86. 86.
    Mador, J. J. and Elmaghraby, S. E.: Handbook of Operations Research, Van Nostrand-Reinhold, New York, 1978Google Scholar
  87. 87.
    Geoffrion, A. M. (Ed.): Perspectives on Optimization, Addison Wesley, Reading, Mass., 1972zbMATHGoogle Scholar
  88. 88.
    Himmelblau, D. M. (Ed.): Decomposition of Large-Scale Problems, Proceedings of a Conference, Cambridge U.K., July 17–26, 1972, North-Holland, Amsterdam, 1973zbMATHGoogle Scholar
  89. 89.
    Zimmermann, H.-J.: Einf. in die Grundlagen des Oper. Res.—Eine nicht-mathematische Einf., Morderne Industrie, München, 1972Google Scholar
  90. 90.
    Greenberg, H., Murphy, F. and Shaw, S. (Editors): Advanced Techniques in the Practice of Oper. Res., North-Holland, Amsterdam, 1982Google Scholar
  91. 91.
    Purdom, P. W. Jr. and Brown, C. A.: The Analysis of Algorithms, Holt, Rinehart and Winston, New York, 1985Google Scholar
  92. 92.
    Schittkowski, K. (Ed.): Computational Mathematical Programming, Springer, Heidelberg, NATO ASI Series F, Computer and Systems Sciences Vol. 15, 1984Google Scholar
  93. 93.
    Neustadt, L. W.: Optimization, Princeton Univ. Press, Princeton, N. J., 1976zbMATHGoogle Scholar
  94. 94.
    Ioffe, A. D. und Tichomirov, V. M.: Theorie der Extremalaufgaben, Deutscher Verlag der Wissenschaften, Berlin, 1979zbMATHGoogle Scholar
  95. 95.
    loffe, A. D. und Tichomirov, V. M.: Theory of Extremal Problems, North Holland, Amsterdam, 1979Google Scholar
  96. 96.
    Dantzig, G. B. and Veinot, A. F. (Eds.): Math. of the Decision Sciences, Part 1 and 2, American Math. Soc., Providence, R. I., 1968Google Scholar
  97. 97.
    Berge, C. and Ghouila-Houri, A.: Programming, Games and Transportation Networks, Methuen and Co., London, 1965Google Scholar
  98. 98.
    Eppen, G. D., Gould, F. S. and Schmidt, C. P.: Introductory Management Science, Prentice-Hall, Englewood Cliffs, N. J., 1987Google Scholar
  99. 99.
    Sholomov, L. A. and Yudin, D. B.: The Complexity of Multistep Generalized Mathematical Programming Schemas, Soy. J. Comput. Syst. Sci., Vol. 26, No. 4, 1988, 127–136MathSciNetzbMATHGoogle Scholar
  100. 100.
    Powell, M. J. D. (Ed.): Mathematical Models and their Solution-Contributions to the Martin Beale Memorial Symposium, Math. Progr., Vol. 42, No. 1, Special Issue, April 1988Google Scholar
  101. 101.
    Wilde, D. J.: Optimum Seeking Methods, Prentice-Hall, Englewood Cliffs, N. J., 1965zbMATHGoogle Scholar
  102. 102.
    Beightler, C. S., Phillips, D. T. and Wilde, D. J.: Foundations of Optimization, 2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1979Google Scholar
  103. 103.
    Kronsjo, L.: Computational Complexity of Sequential and Parallel Algorithms, Wiley, Great Britain, 1985Google Scholar
  104. 104.
    Littger, K.: Standard-Register des Operations Research, Verlag Moderne Industrie, München, 1971Google Scholar
  105. 105.
    Bazaraa, M. S. and Shetty, C. M.: Foundations of Optimization, Springer, Berlin, 1976zbMATHGoogle Scholar
  106. 106.
    Zoutendijk, G.: Math. Progr. Methods, North Holland, Amsterd., 1976Google Scholar
  107. 107.
    Rivett, B. H. P.: Concepts of Oper. Res., Watts, London, 1968Google Scholar
  108. 108.
    Shapiro, J. F.: Mathematical Programming-Structures and Algorithms, Wiley, New York, 1979zbMATHGoogle Scholar
  109. 109.
    Dixon, L. C. W. (Ed.): Optimization in Action, Academic Press, London, 1976Google Scholar
  110. 110.
    Mc Milian, C.: Mathematical Programming, Wiley, New York, 1975Google Scholar
  111. 111.
    Vazsonyi, A.: Scientific Programming in Business and Industry, John Wiley, New York, 1958zbMATHGoogle Scholar
  112. 112.
    Duerr, W. und Kleibohm, K.: Operations Research. Lineare Modelle und ihre Anwendung, Hanser Verlag, München, 1983Google Scholar
  113. 113.
    Cesari. L.: Optimization-Theory and Appl., Springer, Berlin, 1983Google Scholar
  114. 114.
    Kaufmann, A. and Gupta, M. M.: Fuzzy Mathematical Models in Engineering and Management Science, North-Holland, Amsterdam, 1988zbMATHGoogle Scholar
  115. 115.
    Rand, G. K. (Ed.): Operational Research ‘87, Proceedings of the 11th IFORS International Conference, Buenos Aires, Argentinia, 10–14 August 1987, North-Holland, Amsterdam, 1988zbMATHGoogle Scholar
  116. 116.
    Nemhauser, G. L., Rinnooy Kan, A. H. G., and Todd, M. J. (Eds.): Optimization, Handbooks in Operations Research and Management Science, Vol. 1, North-Holland, Amsterdam, 1989Google Scholar
  117. 117.
    Sivazlian, B. D. and Stanfel, L. E.: Optimization Techniques in Operations Research, Prentice-Hall, Englewood Cliffs, N. J., 1975Google Scholar
  118. 118.
    Taha, H. A.: Oper. Res.-An Introduction, Macmillan, New York, 1983Google Scholar
  119. 119.
    Luenberger, D. G.: Linear and Nonlinear Programming, Addison-Wesley, New York, 1984zbMATHGoogle Scholar
  120. 120.
    Prekopa, A. (Ed.): Survey of Math. Progr., North Holland, Amsterdam, 1979Google Scholar
  121. 121.
    Philips, T. D., Ravindran, A., and Solberg, J. J.: Operations Research-Principles and Practice, Wiley, New York, 1976Google Scholar
  122. 122.
    Geoffrion, A. M.: Elements of Large Scale Mathematical Programming, Mgmt. Sci., Vol. 16, 1970, 652–691MathSciNetzbMATHGoogle Scholar
  123. 123.
    Thoft-Christensen, P. (Ed.): System Modeling and Optimization, Springer, New York, 1984Google Scholar
  124. 124.
    Beale, E. M. L.: Introduction to Optimization, Wiley, New York, 1988zbMATHGoogle Scholar
  125. 125.
    Megiddo, N. (Ed.): Progress in Math. Progr., Springer, New York, 1988Google Scholar
  126. 126.
    Kaufmann, A. and Faure, R.: Introduction to Operations Research, Academic Press, New York, 1968zbMATHGoogle Scholar
  127. 127.
    Carr, C. R. and Howe, C. W.: Introduction to Quantitative Decision Procedures in Mgmt. and Economics, McGraw-Hill, New York, 1964Google Scholar
  128. 128.
    Gottfried, B. S. and Weisman, J.: Introduction to Optimization Theory, Prentice-Hall, Englewood Cliffs, N. J., 1973Google Scholar
  129. 129.
    Kreweras, G. and Morlat, G. (Eds.): Proceedings of the Third International Conference on Operations Research, Dunod, Paris, und English Universities Press, London, 1963Google Scholar
  130. 130.
    Pierre, D. A.: Optimization Theory with Appl., Wiley, New York, 1969Google Scholar
  131. 131.
    Gal, T.: Postoptimal Analysis, Parametric Programming and Related Topics, McGraw-Hill, New York, 1978Google Scholar
  132. 132.
    Bartels, R. H., Golub, G. H., and Saunders, M. G.: Numerical Techniques in Mathematical Programming, in VIII.1. 5–160, 1970, 123–176MathSciNetGoogle Scholar
  133. 133.
    Kuhn, H. W. (Ed.): Proceedings of the Princeton Symposium on Math. Progr., Princeton Univ. Press, Princeton, N. J., 1970Google Scholar
  134. 134.
    Churchman, C. W. and Verhulst, M. (Eds.): Management Science—Models and Techniques, Pergamon Press, London, 1960Google Scholar
  135. 135.
    Churchman, C. W.: Prediction and Optimal Decision, Prentice-Hall, Englewood Cliffs, New Jersey, 1961Google Scholar
  136. 136.
    Hertz, D. B.: A Comprehensive Bibliography on Operations Research 1957–1958, Wiley, New York, 1963Google Scholar
  137. 137.
    Hertz, D. B. and Melese, J. (Eds.): Proceedings of the Fourth International Conf. on Operations Research, Wiley, New York, 1966Google Scholar
  138. 138.
    Gillet, B. E.: Introduction to Operations Research—A Computer-Oriented Algorithm Approach, McGraw-Hill, New York, 1976Google Scholar
  139. 139.
    Korte, B. (Ed.): Modern Applied Mathematics—Optimization and Operations Research, North Holland, 1982zbMATHGoogle Scholar
  140. 140.
    Gustafson, S.-A. and Kortanek, K. O.: Semi-Infinite Programming and Applications, in VIII.1. 1–16, 1983, 132–157MathSciNetGoogle Scholar
  141. 141.
    Krabs, W.: Optimierung und Approximation, Teubner, Stuttgart, 1975zbMATHGoogle Scholar
  142. 142.
    Perold, A. F.: Extreme Points and Basic Feasible Solutions in Continuous Time Lin. Progr., SIAM J. Contr. Opt., Vol. 19, 1981, 52MathSciNetzbMATHGoogle Scholar
  143. 143.
    Späth, H. (Ed.): Fallstudien Operations Research, Band 1 und 2, Oldenbourg Verlag, Müchen, 1978Google Scholar
  144. 144.
    Minoux, M.: Programmation Mathematique—Theorie et algorithmes, Dunod, Paris, 1983zbMATHGoogle Scholar
  145. 145.
    Rao, S. S.: Optimization Theory and Applications, Wiley Eastern Ltd., New Delhi, 1979zbMATHGoogle Scholar
  146. 146.
    Gessner, P., Henn, R., Steinecke, V. und Todt, H. (Eds.): Proceedings in Operations Research 3, Papers of the DGOR Annual Meeting 1973, Physica Würzburg, 1974Google Scholar
  147. 147.
    Henke, M., Jaeger, A., Wartmann, R., and Zimmermann, H.-J. (Eds.): Proceedings in Operations Research 1, DGOR Annual Meeting 1971, Physica Würzburg, 1972Google Scholar
  148. 148.
    Wallace, S. W. (Ed.): Algorithms and Model Formulations in Mathematical Programming, Proceedings of NATO Advanced Research Workshop in Bergen (1987), Springer, Berlin, 1989zbMATHGoogle Scholar
  149. 149.
    Waters, C. D.: A Practical Introduction to Management Science, Addison-Wesley, Wokingham, 1989Google Scholar
  150. 150.
    Reinfeld, N. V. and Vogel, W.: Mathematical Programming, Prentice-Hall, Englewood Cliffs, N. J., 1958Google Scholar
  151. 1.
    Dantzig, G. B.: Linear Programming and Extensions, Princeton Univ. Press, 1963zbMATHGoogle Scholar
  152. 2.
    Hadley, G.: Linear Programming, Addison-Wesley Publishing Company, Reading, Mass., 1962zbMATHGoogle Scholar
  153. 3.
    Sakarovitch, M.: Linear Programming, Springer, New York, 1984Google Scholar
  154. 4.
    Zionts, S.: Linear and Integer Programming, Prentice-Hall, Englewood Cliffs, N. J., 1974Google Scholar
  155. 5.
    Dantzig, G. B.: Lineare Progr. und Erweiterungen, Springer, Berlin, 1966Google Scholar
  156. 6.
    Joksch, H. C.: Lineares Programmieren, Mohr, Tuebingen, 1962Google Scholar
  157. 7.
    Runzheimer, B.: Operations Research. Band 1: Lineare Planungsrechnung und Netzplantechnik, Gabler, Wiesbaden, 1978Google Scholar
  158. 8.
    Ignizio, J. P.: Linear Programming in Single and Multiple Objective Systems, Prentice-Hall, New Jersey, 1982zbMATHGoogle Scholar
  159. 9.
    IBM: An Introduction to Linear Programming, Form-No. GE20–8171, White Plains, N. Y., 1964Google Scholar
  160. 10.
    Orchard-Hays, W.: Advanced Linear Programming Computing Techniques, McGraw-Hill, New York, 1968Google Scholar
  161. 11.
    Murtagh, B. A.: Advanced Linear Programming: Computation and Practice, McGraw-Hill, New York, 1981zbMATHGoogle Scholar
  162. 12.
    Garcia, C. B. and Gould, F. J.: Application of Homotopy to Solving Linear Programs, Math. Progr., Vol. 27, No. 3, 1983Google Scholar
  163. 13.
    Ho, J. K. and Loute, E.: Computational Experience with Advanced Implementation of Decomposition Algorithms for Linear Programming, Math. Progr., Vol. 27, No. 3, 1983Google Scholar
  164. 14.
    Klee, V. and Minty, G. L.: How Good is the Simplex Agorithm?, in O. Shisha (Ed.), Inequalities III, Academic Press, New York, 1972, 159–179Google Scholar
  165. 15.
    Khachiyan, L. G.: A Polynomial Algorithm in Linear Programming, Doklady Akademiia Nauk SSSR 244: S (1979)Google Scholar
  166. Khachiyan, L. G.: Translated in Soviet Mathematics Dolady, 20: 1, 1979MathSciNetGoogle Scholar
  167. 16.
    Grötschel, M., Lovasz, L., and Schrijver, A.: The Ellipsoid Method and its Consequences in Combinatorial Optimization, Combinatorica, Vol. 1, No. 2, 1981Google Scholar
  168. 17.
    Karmarkar, N.: A New Polynomial Time Algorithm for Linear Programming, ATandT Bell Lab., Murray Hill, N. J., undated, about 1984Google Scholar
  169. 18.
    Tomlin, J. A.: An Experimental Approach to Karmarkar’s Projective Method for Linear Programming. Mathematical Programming Study 31, North-Holland, Amsterdam, 1987, 175191Google Scholar
  170. 19.
    Ignizio, J. P.: Linear Programming in Single and Multiple Objective Systems, Prentice-Hall, Englewood Cliffs, N. J., 1982zbMATHGoogle Scholar
  171. 20.
    Bartels, R. H.: A Numerical Investigation of the Simplex Method, Thesis, Stanford Univ., 1968Google Scholar
  172. 21.
    Megiddo, N.: On the Complexity of Linear Programming, IBM Research Division, Report RJ 4985 (52162) 1/9/86, IBM Almaden Res. Center, San Jose, California, 1986Google Scholar
  173. 22.
    Ferris, M. C. and Philpott, A. B.: On the Performance of Karmarkar’s Algorithm, J. Oper. Res. Soc., Vol. 39, No. 3, 1988, 257–270MathSciNetzbMATHGoogle Scholar
  174. 23.
    Karmarkar, N.: A New Polynomial Type Algorithm for Linear Programming, Combinatorica, Vol. 4, 1984, 373–395MathSciNetzbMATHGoogle Scholar
  175. 24.
    Harris, P. M. J.: Pivot Selection Methods of the DEVEX LP Code, Math. Progr., Vol. 5, 1973, 1–28zbMATHGoogle Scholar
  176. 25.
    Dantzig, G. B. and Orchard-Hays, W.: The Product Form of the Inverse In the Simplex Method, Mathematical Tables and Aids to Computation, Vol. 8, 1954, 64–67MathSciNetzbMATHGoogle Scholar
  177. 26.
    Ryan, D. M. and Osborne, M. R.: Solution of Highly Degenerate Linear Programs, Math. Progr., Vol. 41, No. 3, 1988, 385–392MathSciNetzbMATHGoogle Scholar
  178. 27.
    Magnanti, T. L. and Orlin, J. B.: Parametric Linear Programming and Anti-Cycling Pivoting Rules, Math. Progr., Vol. 41, No. 3, 1988, 317–325MathSciNetzbMATHGoogle Scholar
  179. 28.
    Robers, P. D.: Interval Linear Programming, Ph.D. Thesis, Northwestern Univ., Evanston, III., 1968Google Scholar
  180. 29.
    Driebeek, N. J.: Applied Linear Programming, Addison-Wesley Publishing Company, Reading, Mass., 1969Google Scholar
  181. 30.
    Kuhn, H. W. and Tucker, A. W. (Eds.): Linear Inequalities and Related Systems, Princeton Univ. Press, Princeton, N. J., 1956zbMATHGoogle Scholar
  182. 31.
    Tomlin, J. A.: An Experimental Approach to Karmarkar’s Projective Algorithm for Linear Programming, Mathematical Programming Study, Vol. 31, 1987, 175–191MathSciNetzbMATHGoogle Scholar
  183. 32.
    Todd, M. J. and Burrell, B. P.: An Extension of Karmarkar’s Algorithm for Linear Programming Using Dual Variables, Algorithmica, Vol. 1, 1986, 409–424MathSciNetzbMATHGoogle Scholar
  184. 33.
    Gill, P. E., Murray, W., Saunders, M. A., Tomlin, J. A., and Wright, M. H.: On Projected Newton Barrier Methods for Linear Programming and an Equivalence to Karmarkar’s Projective Method, Math. Progr., Vol. 36, 1986, 183–209MathSciNetzbMATHGoogle Scholar
  185. 34.
    Adams, W. J., Gerwitz, A., and Quintas, L. V.: Elements of Linear Programming, Van Nostrand Reinhold, New York, 1969Google Scholar
  186. 35.
    Agmon, S.: The Relaxation Method for Linear Inequalities, Canad. Journal of Mathematics, Vol. 6, 1954, 382–392MathSciNetzbMATHGoogle Scholar
  187. 36.
    Antosiewicz, H. A. (Ed.): Proceedings of the Second Symposium in Linear Programming, Vol. 2, National Bureau of Standards, Washington, D. C., 1955Google Scholar
  188. 37.
    Arrow, K. J., Hurwicz, L., and Uzawa, H.: Studies in Linear and Non-Linear Programming, Stanford Univ., Stanford Univ. Press. Cal., 1972Google Scholar
  189. 38.
    Beale, E. M. L.: An Alternative Method for Linear Programming, Proc. of the Cambridge Phil. Soc., Vol. 50, No. 4, 1954, 513–523MathSciNetzbMATHGoogle Scholar
  190. 39.
    Beale, E. M. L.: Cycling in the Dual Simplex Algorithm, Naval Research Logistics Quarterly, Vol. 2, 1955, 269–275MathSciNetGoogle Scholar
  191. 40.
    Beckmann, M. J.: Lineare Planungsrechnung, Fachverlag für Wirtschaftstheorie und ökonometrie, Ludwigshafen/Rhein, 1959zbMATHGoogle Scholar
  192. 41.
    Belakreko: Lehrbuch der Linearen Optimierung, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964Google Scholar
  193. 42.
    Spivey, W. A.: Linear Programming, Macmillam, New York, 1963Google Scholar
  194. 43.
    Wolfe, P.: A Technique for Resolving Degeneracy in Linear Programming, J. SIAM, Vol. 11, 1963, 205–211MathSciNetzbMATHGoogle Scholar
  195. 44.
    Wolfe, P.: The Composite Simplex Algorithm, SIAM Review, Vol. 7, 1965, 42–54MathSciNetzbMATHGoogle Scholar
  196. 45.
    Orden, A. and Goldstein, L. (Eds.): Symposium on Linear Inequalities and Programming, Washington, D. C., 1952Google Scholar
  197. 46.
    Solnik, B. H.: La programmation lineaire, Dunod, Paris, 1969Google Scholar
  198. 47.
    Sordet, J.: La programmation lineaire appliquee a l’entreprise, 1970Google Scholar
  199. 48.
    Soom, E.: Einfuehrung in die Lineare Programmierung, Verlag Techn. Rundschau, bern, 1970Google Scholar
  200. 49.
    Simmonard, M.: Linear Programming, Prentice-Hall, Englewood Cliffs, N. J., 1966Google Scholar
  201. 50.
    Tomlin, J. A.: On Scaling Linear Programming Problems, Mathematical Programming Study, Vol. 4, 1975, 146–166MathSciNetGoogle Scholar
  202. 51.
    Dantzig, G. B. and Wolfe, P.: A Decomposition Principle for Linear Programs, Operations Research, Vol. 8, No. 1, 1960, 101–111zbMATHGoogle Scholar
  203. 52.
    Garvin, W. W.: Introduction to Linear Programming, McGraw-Hill, New York, 1960Google Scholar
  204. 53.
    Todd, M. J.: Exploiting Special Structure in Karmarkars Linear Programming Algorithm, Math. Progr., Vol. 41, 1988, 97–113MathSciNetzbMATHGoogle Scholar
  205. 54.
    Todd, M. J.: An Implementation of the Simplex Method for Linear Programming Problems with Variable Upper Bounds, Math. Progr., Vol. 23, 1982, 34–49MathSciNetzbMATHGoogle Scholar
  206. 55.
    Todd, M. J.: Improved Bounds and Containing Ellipsoids in Karmarkar’s Linear Programming Algorithm, Operations Research, 1989Google Scholar
  207. 56.
    Rinaldi, G.: A Projective Method for Linear Programming with Box-Type Constraints, Algorithmica, Vol. 1, 1986, 517–527MathSciNetzbMATHGoogle Scholar
  208. 57.
    Steger, A.: An Extension of Karmarkar’s Algorithm for Bounded Linear Programming Problems, M. S. Thesis, State Univ. of New York at Stonybrook, Stonybrook, N.Y., 1985Google Scholar
  209. 58.
    Gay, D. M.: A Variant of Karmarkar’s Linear Programming Algorithm for Problems in Standard Form, Math. Progr., Vol. 37, No. 1, 1987, 81–90MathSciNetzbMATHGoogle Scholar
  210. 59.
    Dantzig, G. B. and Van Slyke, R. M.: Generalized Upper Bounding Techinque, J. Comp. Syst. Sci., Vol. 1, 1967, 213–226zbMATHGoogle Scholar
  211. 60.
    Bland, R. G., Goldfrab, D., and Todd, M. J.: The Ellipsoid Method—A Survey, Operations Research, Vol. 29, 1981, 1039–1091MathSciNetzbMATHGoogle Scholar
  212. 61.
    Mehrotra, S.: Variants of Karmarkar’s Algorithm—Theoretical Complexity and Practical Implementation, Ph.D. Thesis, Ind. Eng. and Oper. Res. Dept., Columbia Univ., 1987Google Scholar
  213. 62.
    Goldfarb, D. and Mehrotra, S.: Relaxed Variants of Karmarkar’s Algorithm for Linear Programs with Unknown Optimal Objective Value, Math. Progr., Vol. 40, 1988, 183–195MathSciNetzbMATHGoogle Scholar
  214. 63.
    Padberg, M.: A Different Convergence Proof of the Projective Method for Lin. Progr., Oper. Res. Letter, Vol. 4, No. 6, 1986, 253–257MathSciNetzbMATHGoogle Scholar
  215. 64.
    Borgwardt, K. H.: Der durchschnittliche Rechenaufwand beim Simplexverfahren, in VIII.1. 1–57, 1985Google Scholar
  216. 65.
    Judin, D. B. und Golstein, E. G.: Lineare Optimierung I, Akademie Verlag, Berlin, 1968zbMATHGoogle Scholar
  217. 66.
    Judin, D. B. und Golstein, E. G.: Lineare Optimierung II, Akademie Verlag, Berlin, 1970Google Scholar
  218. 67.
    Richter, K. J.: Methoden der Linearen Optimierung, VEB Fachbuchverlag, Leipzig, 1966Google Scholar
  219. 68.
    Chvatal, V.: Linear Programming, W. M. Freeman and Co., 1982Google Scholar
  220. 69.
    Dantzig, G. B.: Large Scale Linear Programs—A Survey, 7th Int. Symp. on Math. Progr., The Hague, Netherlands, 1970Google Scholar
  221. 70.
    Salkin, H. M. and Saha, J. (Eds.): Studied in Linear Programming, North Holland/American Elsevier, Amsterdam, 1975Google Scholar
  222. 71.
    Sloan, S. W.: Steepest Edge Active Set Algorithm for Solving Sparse Linear Programming Problems, Int. J. Numer. Methods Eng., Vol. 26, No. 12, 1988, 2671–2685MathSciNetzbMATHGoogle Scholar
  223. 72.
    Haugland, D. and Wallace, S. W.: Solving Many Linear Programs that Differ Only in the Righthand Side, Eur. J. Oper. Res., Vol. 37, No. 3, 1988, 318–324MathSciNetzbMATHGoogle Scholar
  224. 73.
    Myers, D. C. and Shih, W.: Constraint Selection Technique for a Class of Lin. Programs, Oper. Res. Letters, Vol. 7, No. 4, 1988, 191–195MathSciNetGoogle Scholar
  225. 74.
    Dantzig, G. B., Orden, A., and Wolfe, P.: The Generalized Simplex Method for Minimizing a Linear Form Under Linear Inequality Restraints, Pacific J. Math., Vol. 5, 1955, 183–195MathSciNetzbMATHGoogle Scholar
  226. 75.
    Dantzig, G. B.: Time-Staged Linear Programs, Stanford Univ., Techn. Report SOL-80–28, 1980Google Scholar
  227. 76.
    Dantzig, G. B.: On the Status of Multistage Linear Programming Problems, Mgmt. Sci., Vol. 6, 1959, 53–72MathSciNetzbMATHGoogle Scholar
  228. 77.
    Schebesch, K. und Stoeppler, S.: Dynamische lineare Programme und lineare Kontrollprobleme—Problemstellungen, Lösungen, Anwendungen, Arbeitsbericht 15 der Forschungsgruppe Planung und Prognose, Universität Bremen, 1984Google Scholar
  229. 78.
    Stoeppler, S.: Dynamische Lineare Programme und Lineare Kontroll-Probleme, in VIII.1. 1–57, 1985, 524–531Google Scholar
  230. 79.
    Borgwardt, K. H.: The Average Number of Pivot Steps Required by the Simplex-Method is Polynomial, Zeitschr. für Oper. Res.,Vol. 26, 1982, 157–177MathSciNetzbMATHGoogle Scholar
  231. 80.
    Borgwardt, K. H.: Zum Rechenaufwand von Simplexverfahren, Operations Research Verfahren, Vol. 31, 1978, 83–97MathSciNetGoogle Scholar
  232. 81.
    Haimovich, M.: The Simplex Algorithm is Very Good—On the Expected Number of Pivot Steps and Related Properties of Random Linear Progr., 415 Uris Hall, Columbia Univ., New York, April 1983Google Scholar
  233. 82.
    Liebling, T.: On the Number of Iterations of the Simplex-Algorithm, ETH Zuerich, Institut für Operations Research, 1972Google Scholar
  234. 83.
    Smale, S.: On the Average Speed of the Simplex Method, in VIII.1. 1–16, 1983, 530–539MathSciNetGoogle Scholar
  235. 84.
    Goldfarb, D.: Worst Case Complexity of the Shadow Vertex Simplex Algorithm, Columbia Univ. School of Eng. and Appl. Science, 1983Google Scholar
  236. 85.
    Goldfarb, G., and Sit, W. J.: Worst Case Behavior of the Steepest Edge Simplex Method, Discrete Appl. Math., Vol. 1, 1979, 277–285MathSciNetzbMATHGoogle Scholar
  237. 86.
    Markowitz, H. M.: The Elimination Form of the Inverse and its Applications to Lin. Progr., Mgmt. Sci., Vol. 3, 1957, 255–269MathSciNetzbMATHGoogle Scholar
  238. 87.
    Williams, A. C.: Marginal Values in Linear Programming, J. of SIAM, Vol. 11, 1963, 82–94zbMATHGoogle Scholar
  239. 88.
    Cottle, R. W. and Dantzig, G. B.: Complementary Pivot Theory of Mathematical Programming, Linear Algebra and its Applications, Vol. 1, 1968, 103–125MathSciNetzbMATHGoogle Scholar
  240. 89.
    Bloech, J.: Lineare Optimierung für Wirtschaftswissenschaftler, Westdeutscher Verlag, Opladen, 1974Google Scholar
  241. 90.
    Shanno, D. F.: Computing Karmarkar Projections Quickly, Mathematical Programming, Vol. 41, No. 1, 1988, 61–71MathSciNetzbMATHGoogle Scholar
  242. 91.
    Dennis, J. E. Jr., Morshedi, A. M., and Turner, K.: Variable-Metric Variant of the Karmarkar Algorithm for Linear Programming, Math. Programming, Vol. 39, No. 1, 1987, 1–20MathSciNetzbMATHGoogle Scholar
  243. 92.
    Zimmermann, H.-J. und Zielinski, J.: Lineare Programmierung-ein programmiertes Lehrbuch, Berlin, 1971Google Scholar
  244. 93.
    Boot, J. C. G.: On Trivial and Binding Constraints in Programming Problems, Mgmt. Sci., Vol. 8, No. 4, 1962, 419–441MathSciNetzbMATHGoogle Scholar
  245. 94.
    Bixby, R. and Wagner, D.: A Note on Detecting Simple Redundancies in Linear Systems, Oper. Res. Letters, Vol. 6, No. 1, 1987, 15–17MathSciNetzbMATHGoogle Scholar
  246. 95.
    Charnes, A., Cooper, W., and Thompson, G.: Some properties of Redundant Constraints and Extraneous Variables in Direct and Dual Linear Progr. Probl., Oper. Res., Vol. 10, 1962Google Scholar
  247. 96.
    Thompson, G., Tonge, F., and Zionts, S.: Techniques for Removing Non-binding Constraints and Extraneous Variables from Linear Progr. Probl., Mgmt. Science, Vol. 12, No. 7, 1966, 588–608zbMATHGoogle Scholar
  248. 97.
    Tomlin, J. and Welch, J.: Finding Duplicate Rows in a Linear Programming Model, Operations Research Letters, Vol. 5, No. 1, 1985, 7–11MathSciNetGoogle Scholar
  249. 98.
    Megiddo, N. and Shub, M.: Boundary Behavior of Interior Point Algorithms in Lin. Progr., Math. Oper. Res., Vol. 14, No. 1, 1989, 97MathSciNetzbMATHGoogle Scholar
  250. 99.
    Vanderbei, R.J.: Affine-Scaling for Linear Programs With Free Variables, Math. Progr. Ser. A, Vol. 43, No. 1, Jan. 1989, 31–44MathSciNetzbMATHGoogle Scholar
  251. 100.
    Caron, R. J. and McDonald, J. F.: New Approach to the Analysis of Random Methods for Detecting Necessary Linear Inequality Constraints, Math. Progr. Ser. A, Vol. 43, No. 1, 1989, 97–102MathSciNetzbMATHGoogle Scholar
  252. 101.
    Bixby, R. E. and Cunningham, W. H.: Converting Linear Programs to Network Probl., Math. of Oper. Res., Vol. 5, No. 3, 1980, 321–357MathSciNetzbMATHGoogle Scholar
  253. 102.
    Wagner, H. M.: A Comparison of the Original and the Revised Simplex Methods, Operations Research, Vol. 5, 1957, 361–369MathSciNetGoogle Scholar
  254. 103.
    Shanno, D. F. and Marsten, R. E.: Reduced-Gradient Variant of Karmarkar’s Algorithm and Nullspace Projections, J. Optim. Theory and Appl., Vol. 57, No. 3, 1988, 383–397MathSciNetzbMATHGoogle Scholar
  255. 104.
    Scolnik, H.: A New Approach to Linear Programming, SIGMAP Newsletter, No. 15, 1973, 35–42MathSciNetGoogle Scholar
  256. 105.
    Forrest, J. J. H. and Tomlin, J. A.: Updated Triangular Factors of the Basis to Maintain Sparsity in the Product Form Simplex Meth., Math. Progr., Vol. 2, 1972, 263–278MathSciNetzbMATHGoogle Scholar
  257. 106.
    Hattersley, B. and Wilson, J.: A Dual Approach to Primal Degeneracy, Math. Progr., Vol. 42, 1988, 135–145MathSciNetzbMATHGoogle Scholar
  258. 107.
    Charness, A.: Optimality and Degeneracy in Linear Programming, Econometrica, Vol. 20, 1952, 160–170MathSciNetGoogle Scholar
  259. 108.
    Bland, R. G.: New Finite Pivoting Rules for the Simplex Method, Mathematics of Operations Research, Vol. 2, 1977, 103–107MathSciNetzbMATHGoogle Scholar
  260. 109.
    Tomlin, J. A. and Welch, J. S.: Formal Optimization of Some Reduced Linear Programming Problems, Math. Progr., Vol. 27, 1983, 232–240MathSciNetzbMATHGoogle Scholar
  261. 110.
    Mitra, G., Tamiz, M., and Yadegar, J.: Experimental Investigation of an Interior Search Method within a Simplex Framework, Comm. of the ACM, Vol. 31, No. 12, 1988, 1474–1482MathSciNetGoogle Scholar
  262. 112.
    Borgwardt, K. H.: Some Distribution-Independent Results About the Asymptotic Order of the Average Number of Pivot Steps of the Simplex-Method, Math. of Oper. Res., Vol. 7, No. 3, 1982, 441–462MathSciNetzbMATHGoogle Scholar
  263. 113.
    Murty, K. G. and Fathi, Y. A.: Feasible Direction Method for Linear Progr., Oper. Res. Letters, Vol. 3, No. 3, 1984, 121–127MathSciNetzbMATHGoogle Scholar
  264. 114.
    Nickels, W. W., Rodder, L. X. U., and Zimmermann, H.-J.: Intelligent Gradient Search in Linear Programming, Eur. J. Oper. Res., Vol. 22, 1985, 293–303MathSciNetzbMATHGoogle Scholar
  265. 115.
    Sherali, H. D., Soyster, A. L., and Baines, S. G.: Nonadjacent Extreme Point Methods for Solving Linear Programs, Nay. Res. Logist. Quarterly, Vol. 30, 1983, 145–161MathSciNetzbMATHGoogle Scholar
  266. 116.
    Tamiz, M.: Design, Implementation and Testing of a General Linear Programming System Exploiting Sparsity, Ph.D. Thesis, Dept. of Math. and Statistics, Brunel Univ., London, 1986Google Scholar
  267. 117.
    Mangasarian, O. L.: Iterative Solution of Linear Programs, SIAM J. Numerical Analysis, Vol. 18, No. 4, 1981, 606–614MathSciNetzbMATHGoogle Scholar
  268. 118.
    Gonzaga, C. C.: Conical Pojection Algorithms for Linear Programming, Math. Progr., Vol. 43, 1989, 151–173MathSciNetzbMATHGoogle Scholar
  269. 119.
    Adler, I., Resende, M. and Veiga, G.: An Implementation of Karmarkar’s Algorithm for Linear Programming, Report ORC86–8, Oper. Res. Center, Univ. of California, Berkeley, CA., 1986Google Scholar
  270. 120.
    Sherali, H. D.: Algorithmic Insights and a Convergence Analysis for a Karmarkar-Type of Algorithm for Linear Programming Problems, Nay. Res. Logist. Quart., Vol. 34, 1987, 399–416MathSciNetzbMATHGoogle Scholar
  271. 121.
    Ho, J. K. and Loute, E.: An Advanced Implementation of the Dantzig-Wolfe Decomposition Algorithm for Linear Programming, Math. Progr., Vol. 20, 1981, 303–326MathSciNetzbMATHGoogle Scholar
  272. 122.
    Orchard-Hays, W.: Background, Development and Extensions of the Revised Simplex-Method, RM-1433, The RAND Corp., 1954Google Scholar
  273. 123.
    Kalan, J. E.: Aspects of Large-Scale In-Core Linear Programming, in Proceedings of the 1971 Annual Conference of the ACM, Chicago, IL., 1971, 304–313Google Scholar
  274. 124.
    Schrage, L.: Implicit Representation of Variable Upper Bounds in Linear Progr., Math. Progr. Studies, Vol. 4, 1975, 118–132MathSciNetGoogle Scholar
  275. 125.
    Sethi, A. P.: The Pivot and Probe Algorithm for Solving a Linear Program, Math. Progr., Vol. 29, No. 2, 1984, 219–233MathSciNetzbMATHGoogle Scholar
  276. 126.
    Iri, M. and Imai, H.: A Multiplicative Barrier Function Method for Linear Programming, Algorithmica, Vol. 1, 1986, 455–482MathSciNetzbMATHGoogle Scholar
  277. 127.
    Ferris, M. C. and Philpott, A. B.: Some Remarks on Karmarkar’s Algorithm, Cambridge Univ., Engineering Dept., Report CUED/F-CAMS/TR 251, Cambridge, Mass., 1985Google Scholar
  278. 128.
    Schönlein, A.: Der Algorithmus von Khachian, Angewandte Informatik, No. 3, 1981, 115–121Google Scholar
  279. 129.
    Murty, K. G.: Linear Programming, Wiley, New york, 1983zbMATHGoogle Scholar
  280. 130.
    Murty K. G.: Linear and Combinatorial Programming, Wiely, New York, 1976zbMATHGoogle Scholar
  281. 131.
    Schönlein, A.: Der Algorithmus von Karmarkar—Idee, Realisation, Beispiel und numerische Erfahrungen, Angewandte Informatik, No. 8, 1986, 344–353Google Scholar
  282. 132.
    Aucamp, D. C., and Steinberg, D. I.: The Computation of Shadow Prices in Linear Progr., J. Oper. Res. Soc., Vol. 33, 1982, 557–565MathSciNetzbMATHGoogle Scholar
  283. 133.
    Williams, H. P.: Restricted Vertex Generation Applied as a Crashing Procedure for Linear Programming, Computers and Oper. Res., Vol. 11, 1984, 401–407MathSciNetzbMATHGoogle Scholar
  284. 134.
    Akgul, M.: Topics in Relaxation and Ellipsoidal Methods, Pitman, Boston, 1984Google Scholar
  285. 135.
    Nichels, W., Rodder, W., Xu, L., and Zimmermann, H.-J.: Intelligent Gradient Search for Linear Programming, Institutsbericht 85/08 des Lehrstuhls für Unternehmensforschung der RWTH, Aachen, 1985Google Scholar
  286. 136.
    Hacijan, L. G.: A Polynomial Algorithm in Linear Programming, Soviet Mathematics—Doklady, Vol. 20, No. 1, 1979, 191–194MathSciNetzbMATHGoogle Scholar
  287. 137.
    Brown, G. G., Mc Bride, R. D., and Wood, R. K.: Extracting Embedded Generalized Networks from Linear Programming Problems, Math. Progr., Vol. 32, 1985, 11–31zbMATHGoogle Scholar
  288. 138.
    Cooper, L. and Kennington, J.: Non-Extreme Point Solution Strategies for Linear Programs, Naval Research Logistics Quarterly, Vol. 26, No. 3, 1979, 447–461zbMATHGoogle Scholar
  289. 139.
    Schrage, L.: On Hidden Structures in Linear Progr., in X-174, 1981Google Scholar
  290. 140.
    Mc Bride, R.: Solving Embedded Generalized Network Problems, Eur. J. Oper. Res., Vol. 21, 1985, 82–92Google Scholar
  291. 141.
    Cooper, L. and Steinberg, D.: Methods and Applications for Linear Programming, W. B. Saunders, Philadelphia, 1974Google Scholar
  292. 142.
    Bazaraa, M. S. and Jarvis, J. J.: Linear Programming and Network Flows, Wiley, New York, 1977zbMATHGoogle Scholar
  293. 143.
    Ho, J. K.: Recent Advances in the Decomposition Approach to Linear Programming, Math. Programming Study, No. 31, 1987, 119–128zbMATHGoogle Scholar
  294. 144.
    Gass, S. I.: Linear Programming—Methods and Applications, Mc Graw-Hill, New York, 1964Google Scholar
  295. 145.
    Gass, S. I.: An Illustrated Guide to Linear Programming, Mc Graw-Hill, New York, 1970Google Scholar
  296. 146.
    Kotiah, T. C. T. and Steinberg, D. I.: On the Possibility of Cycling with the Simplex-Meth., Oper. Res., Vol. 26, No. 2, 1978, 374–376Google Scholar
  297. 147.
    Dantzig, G. B.: Linear Programming under Uncertainty, Management Science, Vol. 1, 1955, 197–206MathSciNetzbMATHGoogle Scholar
  298. 148.
    Krelle, W. und Kuenzi, H. P.: Lineare Programmierung, Verlag Industrielle Organisation, Zuerich, 1958zbMATHGoogle Scholar
  299. 149.
    Kreko, B.: Linear Programming, Pitman, London, 1968Google Scholar
  300. 150.
    Schrijver, A.: Theory of Linear and Integer Programming, Wiley, Chichester, 1986zbMATHGoogle Scholar
  301. 151.
    Fathi, Y. A. and Murty, K. G.: Computational Behavior of a Feasible Direction Method for Linear Programming, Eur. J. Oper. Res., Vol. 40, No. 3, 1989, 322–328MathSciNetzbMATHGoogle Scholar
  302. 152.
    Anstreicher, K. M.: The Worst-Case Step in Karmarkar’s Algorithm, Math. of Oper. Res., Vol. 14, No. 2, 1989, 294–302MathSciNetzbMATHGoogle Scholar
  303. 153.
    Dodani, M. H. and Babu, A. J. G.: Karmarkar’s Projective Method for Linear Programming—A Computational Appraisal, Comp. Ind. Eng., Vol. 16, No. 1, 1989, 189–206Google Scholar
  304. 154.
    Renegar, J.: A Polynomial-Time Algorithm Based on Newton’s Method for Linear Programming, Math. Progr., Vol. 40, 1988, 59–93MathSciNetzbMATHGoogle Scholar
  305. 155.
    Dantzig, G. B.: Upper Bounds, Secondary Constraints and Block Triangularity in Lin. Progr., Econometrica, Vol. 23, 1955, 174–183MathSciNetzbMATHGoogle Scholar
  306. 156.
    Wendell, R. E.: The Tolerance Approach to Sensitivity Analysis in Lin. Progr., Oper. Res., Vol. 31, 1985, 564–578MathSciNetzbMATHGoogle Scholar
  307. 157.
    Tomlin, J. A.: A Note on Comparing Simplex and Interior Methods for Linear Programming, in VIII.1. 1–125, 1988Google Scholar
  308. 158.
    Adler, I., Karmarkar, N., Resende, M. G. C., and Veiga, G.: Data Structures and Programming Techniques for the Implementation of Karmarkar’s Algorithm, Technical Report, Dept. of IE/OR, Univ. of California, Berkeley, CA., 1987Google Scholar
  309. 159.
    Suhl, U. and Aittoniemi, L.: Computing Sparse LU-Factorizations for Large-Scale Linear Programming Bases, Arbeitspapier 58/87, Fachbereich Wirtschaftswissenschaften, Angewandte Informatik, Freie Universität Berlin, 1987Google Scholar
  310. 160.
    Derigs, U.: Neuere Ansätze in der Linearen Optimierung—Motivation, Konzepte and Verfahren, in Oper. Res. Proc. 1985, Springer, Berlin, 1986Google Scholar
  311. 161.
    Ye, Y.: Interior Algorithms for Linear, Quadratic and Linearly Constrained Convex Programming, Ph.D. Thesis, Dept. of Eng.-Econ. Systems, Stanford Univ., CA., 1987Google Scholar
  312. 162.
    Avis, D. and Chvatal, V.: Notes on Bland’s Pivoting Rule, Math. Programming Study, Vol. 8, 1978, 24–34Google Scholar
  313. 163.
    Cunningham, W. H.: A Network Simplex Method, Mathematical Programming, Vol. 11, 1976, 105–116MathSciNetzbMATHGoogle Scholar
  314. 164.
    Barr, R. S., Glover, F., and Klingman, D.: The Alternating Basis Algorithm for Assignment Problems, Math. Progr., Vol. 13, 1977, 1–13MathSciNetzbMATHGoogle Scholar
  315. 165.
    Roohy-Laleh, E.: Improvements of the Theoretical Efficiency of the Network Simplex Method, M.Sc. Thesis, Ottawa, 1981Google Scholar
  316. 166.
    Rinnooy Kan, A. H. G. and Talgen, J.: The Complexity of Linear Programming, Statistica Nederlandica, 1981, 91–107Google Scholar
  317. 167.
    Culioli, J.-C. and Protopopescu, V.: New Algorithm for Linear Programming That is Easy to Implement—Application to the Transportation Problem, Oak Ridge National Lab., Tennessee, 1988Google Scholar
  318. 168.
    Goldfarb, D. and Mehrotra, S.: A Relaxed Version of Karmarkar’s Method, Math. Progr., Vol. 40, 1988, 289–315MathSciNetzbMATHGoogle Scholar
  319. 169.
    Goldfarb, D. and Reid„ J. K.: A Practicable Steepest-Edge Simplex Algorithm, Math. Progr., Vol. 12, 1977, 361–371MathSciNetzbMATHGoogle Scholar
  320. 170.
    Anstreicher, K. M.: Strengthened Acceptance Criterion for Approximate Projections in Karmarkar’s Algorithm, Oper. Res. Letters, Vol. 5, No. 4, 1986, 211–214MathSciNetzbMATHGoogle Scholar
  321. 171.
    Pickel, P. F.: Approximate Projections for the Karmarkar Algorithm Theory, Polytechnic Institute of New York, Farmingdale, 1985Google Scholar
  322. 172.
    Pan, V.: On the Complexity of a Pivot Step of the Revised Simplex Method, Computers and Math., Vol. 11, No. 11, 1985, 1127–1140MathSciNetzbMATHGoogle Scholar
  323. 173.
    Volkovich, V. L., Voynalovich, V. M., and Kudin, V. I.: Relaxation Scheme of Dual Row Simplex Method, Sov. J. Automation Inf. Sci., Vol. 21, No. 1, 1988, 37–43MathSciNetzbMATHGoogle Scholar
  324. 174.
    Blum. L.: Towards an Asymptotic Analysis of Karmarkar’s Algorithm, Information Processing Letters, Vol. 23, 1986, 189–194MathSciNetGoogle Scholar
  325. 175.
    Barnes, E. R.: A Variation on Karmarkar’s Algorithm for Solving Linear Progr. Problems, Math. Progr., Vol. 36, 1986, 174–182zbMATHGoogle Scholar
  326. 176.
    Anstreicher, K. M.: Combined Phase I—Phase II Projective Algorithm for Linear Programming, Math. Progr., Ser. A, Vol. 43, No. 2, 1989, 209–223MathSciNetzbMATHGoogle Scholar
  327. 177.
    Anstreicher, K. M.: A Monotonic Projective Algorithm for Fractional Linear Programming, Algorithmica, Vol. 1, 1986, 483–498MathSciNetzbMATHGoogle Scholar
  328. 178.
    De Ghellinck, G. and Vial, J.: A Polynomial Newton Method for Linear Programming, Algorithmica, Vol. 1, 1986, 425–453MathSciNetzbMATHGoogle Scholar
  329. 179.
    Ye, Y. and Kojima, M.: Recovering Optimal Dual Solutions in Karmarkar’s Polynomial Algorithm for Linear Programming, Math. Progr., Vol. 39, 1987, 305–317MathSciNetzbMATHGoogle Scholar
  330. 180.
    Smythe, W. R. and Johnson, L. A.: Introduction to Linear Programming with Applications, Prentice-Hall, Englewood Cliffs, N. J., 1966zbMATHGoogle Scholar
  331. 181.
    Olson, M. P.: Dynamic Factorization in Large-Scale Optimization, Naval Postgraduate School, Monterey, CA., 1989Google Scholar
  332. 182.
    Tomlin, J. A.: Modifying Triangular Factors of the Basis in the Simplex Method, in VIII. 2–59, 1972, 77–85Google Scholar
  333. 183.
    Tomlin, J. A.: Survey of Computational Methods for Solving Large Scale Systems, Stanford Univ., Report TR72–25, 1972Google Scholar
  334. 184.
    Tomlin, J. A.: On Pricing and Backward Transformation in Linear Programming, Stanford Univ., Report TR72–21, 1972Google Scholar
  335. 185.
    Benson, H. P. and Erenguc, S. S.: Using Convex Envelopes to Solve the Interactive Fixed-Charge Linear Programming Problem, J. Optim. Theory and Appl., Vol. 59, No. 2, 1988, 223–246MathSciNetzbMATHGoogle Scholar
  336. 186.
    Erenguc, S. S. and Benson, H. P.: The Interactive Fixed-Charge Lin. Progr. Probi., Nay. Res. Logist. Quart., Vol. 33, 1986, 157–177MathSciNetzbMATHGoogle Scholar
  337. 187.
    Traub, J. and Wozniakowski, H.: Complexity of Linear Programming, Operations Research Letters, Vol. 1, 1982, 59–62MathSciNetzbMATHGoogle Scholar
  338. 188.
    Lovasz, L.: A New Linear Programming Algorithm—Better or Worse Than the Simplex Method?, The Mathematical Intelligencer, Vol. 2, 1980, 141–146MathSciNetzbMATHGoogle Scholar
  339. 189.
    Tardos, E.: A Strongly-Polynomial Algorithm to Solve Combinatorial Linear Programs, Oper. Res., Vol. 34, No. 2, 1986Google Scholar
  340. 190.
    Dantzig, G. B.: Optimal Solution to a Dynamic Leontief Model with Substitution, Econometrica, Vol. 23, 1955, 295–302MathSciNetzbMATHGoogle Scholar
  341. 191.
    Koehler, G. J., Whinston, A. B., and Wright, G. P.: The Solution of Leontief Substitution Systems Using Matrix Inversion Techniques, Mgmt. Sci., Vol. 21, No. 11, 1975Google Scholar
  342. 192.
    Wagner, H.: A Linear Programming Soluiton to Dynamic Leontief Type Models, Mgmt. Sci., 1957Google Scholar
  343. 193.
    Veinott, A. F. Jr.: Extreme Points of Leontief Substitution Systems, Linear Algebra and its Applications, Vol. 1, 1968, 181–194MathSciNetzbMATHGoogle Scholar
  344. 194.
    Fourer, R.: Solving Staircase Linear Programs by the Simplex Method-1. Inversion, Math. Progr., Vol. 23, 1982, 274–313MathSciNetzbMATHGoogle Scholar
  345. 195.
    Fourer, R.: Solving Staircase Linear Programs by the Simplex Method-2. Pricing, Math. Progr., Vol. 25, 1983, 251–292MathSciNetzbMATHGoogle Scholar
  346. 196.
    Bartels, R. H. and Golub, G. H.: The Simplex Method Using LU Decomposition, Communications of the ACM, Vol. 12, 1969, 266–268zbMATHGoogle Scholar
  347. 197.
    Propoi, A. and Krivonozhko, V.. E.: The Simplex Method for Dynamic Lin. Progr., Report RR-78–14, Int. IASA, Laxenburg, Austria, 1978Google Scholar
  348. 198.
    Berbee, H. C. P. et al.: Hit-and-Run Algorithms for the Identification of Nonredundant Linear Inequalities, Mathematical Progr., Vol. 37, 1987, 184–207MathSciNetzbMATHGoogle Scholar
  349. 199.
    Caron, R. J. and Mc Donald, J. F.: A New Approach to the Analysis of Random Methods for Detecting Necessary Linear Inequality Constraints, Math. Progr., Vol. 43, 1989, 97–102zbMATHGoogle Scholar
  350. 200.
    Jeroslow, R. G.: Asymptotic Linear Programming Operations Research, Vol. 21, 1973, 1128–1141MathSciNetzbMATHGoogle Scholar
  351. 201.
    Carstens, D. M.: Crashing Techniques, in VIII.1. 1–10, 1968, 131–139Google Scholar
  352. 202.
    Gould, N. I. M. and Reid, J. K.: New Crash Procedures for Large Systems of Linear Constraints, Math. Progr. Ser. B., Vol. 45, No. 3, 1989, 475–501MathSciNetzbMATHGoogle Scholar
  353. 203.
    Murray, W.: Methods for Large-Scale Linear Programming, in VIII.1. 1–148, 1989, 115–137Google Scholar
  354. 1.
    Kaufmann, A. and Henry-Larbordere, A.: Integer and Mixed-Integer Programming: Theory and Appl., Academic Press, New York, 1977Google Scholar
  355. 2.
    Benichou, M., Gauthier, J. M., Girodet, P., Hentges, G., Ribiere, G., and Vincent, O.: Experiments in Mixed-Integer Programming, Math. Programming, Vol. 1, 1971, 76–94MathSciNetzbMATHGoogle Scholar
  356. 3.
    IBM: An Introduction to Modelling Using Mixed–Integer Programming, Form–No. GE19–5043–2, 1975Google Scholar
  357. 4.
    Suhl, U.: Solving Large Scale Mixed-Integer Programs with Fixed-Charge Variables, Math. Progr., Vol. 32, 1985Google Scholar
  358. 5.
    Benders, J. F.: Partitioning Procedures for Solving Mixed-Variables Programming Problems, Numerische Mathematik, Vol. 4, 1962, 238–252MathSciNetzbMATHGoogle Scholar
  359. 6.
    Benders, J. F.: Partitioning in Mathematical Programming, Thesis Univ. of Utrecht, 1960Google Scholar
  360. 7.
    Cote, G. and Laughton, M. A.: Large-Scale Mixed-Integer Programming—Benders-Type Heuristics, Eur. J. Oper. Res., Vol. 16, No. 3, 1984Google Scholar
  361. 8.
    Mitra, G.: Investigations of Some Branch and Bound Strategies for the Solution of Mixed-Integer Linear Programs, Math. Progr., Vol. 4, 1973, 155–170zbMATHGoogle Scholar
  362. 9.
    Singhal, J.: Fixed Order Branch-and-Bound Methods for Mixed-Integer Programming, Diss., Department of Management Inf. Systems, Univ. of Arizona, 1982Google Scholar
  363. 10.
    Szwarc, W.: The Mixed-Integer Linear Programming problem When the Integer Variables are Zero or One, Carnegie Inst. Technology, 1963Google Scholar
  364. 11.
    Harris, P. M. V.: An Algorithm for Solving Mixed-Integer Linear Programmes, Operational Res. Quart., Vol. 15, 1964, 117–132Google Scholar
  365. 12.
    Driebeek, N. J.: An Algorithm for the Solution of Mixed-Integer Programming Problems, Mgmt. Sci., Vol. 12, 1966, 576–587Google Scholar
  366. 13.
    Dakin, R. J.: A Tree Search Algorithm for Mixed-Integer Programming Problems, The Computer Journal, Vol. 8, 1965, 250–255MathSciNetzbMATHGoogle Scholar
  367. 14.
    Lemke, C. E. and Spielberg, K.: Direct Search Zero-One and Mixed-Integer Progr., IBM New York Sci. Center, Report No. 39008, 1966Google Scholar
  368. 15.
    Bennet, J. M. and Dakin, R. J.: Experience with Mixed-Integer Linear Programming Problems, Univ. of Sydney, Mimeographed Report, 1961Google Scholar
  369. 16.
    Davis, R. E., Kendrick, D. A., and Weitzman, M.: A Branch and Bound Algorithm for Zero-One Mixed-Integer Programming Problems, Oper. Res., Vol. 19, No. 4, 1971, 1036–1044MathSciNetzbMATHGoogle Scholar
  370. 17.
    Armstrong, R. D. and Sinha, P.: Improved Penalty Calculations for a Mixed-Integer Branch and Bound Algorithm, Math, Progr., Vol. 6, 1974, 212–223MathSciNetzbMATHGoogle Scholar
  371. 18.
    Benichou, M., Gauthier, J. M., Hentges, G., and Ribiere, G.: The Efficient Solution of Large Scale Linear Programming Problems—Some Algorithmic Techniques and Computational Results, Math. Progr., Vol. 13, 1977, 280–322MathSciNetzbMATHGoogle Scholar
  372. 19.
    Gauthier, J.-M. and Ribiere, G.: Experiments in Mixed-Integer Linear Programming Using Pseudo-Costs, Math. Progr., Vol. 12, 1077, 26–47MathSciNetGoogle Scholar
  373. 20.
    Meyer, R. R.: A Theoretical and Computational Comparison of `Equivalent’ Mixed-Integer Formulations, Nay. Res. Logist. Quart., Vol. 28, 1981, 115–131zbMATHGoogle Scholar
  374. 21.
    Williams, H. P.: Model Building in Linear and Integer Programming, in VIII.1. 1–92, 1984Google Scholar
  375. 22.
    Williams, H. P.: The Reformulation of Two Mixed-Integer Programming Problems, Math. Progr., Vol. 14, 1978, 325–331zbMATHGoogle Scholar
  376. 23.
    Meyer, R. R.: Integer and Mixed-Integer Programming Models—General Properties, J. Opt. Theory and Appl., Vol. 16, 1975, 191–206zbMATHGoogle Scholar
  377. 24.
    Williams, A. C.: Marginal Values in Mixed-Integer Linear Programming, Math. Progr., Vol. 44, 1989, 67–75zbMATHGoogle Scholar
  378. 25.
    Williams, H. P.: The Economic Interpretation of Duality in Mixed Integer Programming Models, in VIII.1. 1–120, 1979Google Scholar
  379. 26.
    Van Roy, T. J. and Wolsey, L. A.: Solving Mixed-Integer Programming Problems Using Automatic Reformulation, Oper. Res., Vol. 29, 1981, 49–74MathSciNetGoogle Scholar
  380. 27.
    Bush, R. L.: Restructuring and Solving Zero-One Integer and Fixed-Charge Mixed-Integer Programming Problems, Ph. D. Diss., Stanford Univ., 1972Google Scholar
  381. 28.
    Wolsey, L. A.: Strong Formulations for Mixed-Integer Programming—A Survey, Math. Progr., Ser. B, Vol. 45, No. 1, 1989, 173–191MathSciNetzbMATHGoogle Scholar
  382. 29.
    Van Roy, T. J. and Wolsey, L. A.: Solving Mixed 0–1 Programs by Automatic Reformulation, Oper. Res., Vol. 35, 1987, 45–57MathSciNetzbMATHGoogle Scholar
  383. 30.
    Van Roy, T. J. and Wolsey, L. A.: Valid Inequalities for Mixed 0–1 Programs, Discrete Applied Mathematics, Vol. 14, 1986, 199–213MathSciNetzbMATHGoogle Scholar
  384. 31.
    Martin, R. K., Sweeney, D. J., and Doherty, M. E.: The Reduced Cost Branch and Bound Algorithm for Mixed-Integer Programming, Comp. Oper. Res., Vol. 12, 1985, 139–149MathSciNetzbMATHGoogle Scholar
  385. 32.
    Martin, R. K.: Generating Alternative Mixed-Integer Linear Programming Models Using Variable Redefinition, Oper. Res., Vol. 35, 1987, 820–831MathSciNetzbMATHGoogle Scholar
  386. 33.
    Admas, W. P. and Sherali, H. D.: Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems, Oper. Res., Vol. 38, No. 2, 1990, 217–226MathSciNetGoogle Scholar
  387. 34.
    Johnson, E. L.: Modeling and Strong Linear Programs for Mixed Integer Programming, in VIII.1. 1–148, 1989Google Scholar
  388. 1.
    Kaufmann, A. and Henry-Larbordere, A.: Integer and Mixed-Integer Programming: Theory and Appl., Academic Press, New York, 1977Google Scholar
  389. 2.
    Zionts, S.: Linear and Integer Programming, Prentice-Hall, Englewood Cliffs, N. J. 1974Google Scholar
  390. 3.
    Salkin, H. M.: Integer Progr., Addison-Wesley, Reading, Mass., 1975Google Scholar
  391. 4.
    Beale, E. M. L.: Survey of Integer Programming, Operational Research Quarterly, Vol. 16, 1965, 219–228Google Scholar
  392. 5.
    Teruo, J.: Numerische Verfahren der Diskreten Optimierung, Teubner, Leipzig, 1981Google Scholar
  393. 6.
    Burkard, R. E.: Methoden der Ganzzahligen Optimierung, Springer, Berlin, 1972zbMATHGoogle Scholar
  394. 7.
    Balinski, M. L.: Integer Programming, Methods, Uses, Computation, Mgmt. Sci., Vol. 12, No. 3, 1965, 253–313MathSciNetzbMATHGoogle Scholar
  395. 8.
    Abadie, J. (Editor): Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970zbMATHGoogle Scholar
  396. 9.
    Ibaraki, T.: Integer Programming Formulation of Combinatorial Optimization Problems, Discrete Math., Vol. 16, 1976, 39–52MathSciNetzbMATHGoogle Scholar
  397. 10.
    Garfinkel, R. S. and Nemhauser, G. L.: Integer Progr., New York, 1972Google Scholar
  398. 11.
    Hammer, P. L. and Rudeanu, X.: Boolean Methods in Operations Research and Related Areas, Springer, Berlin, 1968zbMATHGoogle Scholar
  399. 12.
    Hu, T. C.: Integer Progr. and Network Flows, Addison-Wesley, Reading, Mass., 1970Google Scholar
  400. 13.
    Taha, H. A.: Integer Programming—Theory, Applications and Computations, Academic Press, New York, 1975zbMATHGoogle Scholar
  401. 14.
    Williams, H. P.: Experiments in the Formulation of Integer Programming Problems, Math. Progr. Study 2, 1974, 180–197Google Scholar
  402. 15.
    Crowder, H., Johnson, E. L., and Padberg, M. W.: Solving Large-Scale Zero-One Linear Programming Problems, Operations Research, Vol. 31, No. 5, 1983, 803–834zbMATHGoogle Scholar
  403. 16.
    Johnson, E. L., Kostreva, M. M., and Suhl, U.: Solving 0–1 Integer Programming Problems Arising From Large Scale Planning Models, Operations Research, 1982Google Scholar
  404. 17.
    Glover, F. and Woolsey, E.: Converting the 0–1 Polynomial Programs to a 0–1 Linear Program, Oper. Res., Vol. 22, 1974, 180–182zbMATHGoogle Scholar
  405. 18.
    Balas, E. and Mazzola, J. B.: Nonlinear 0–1 Programming, Part I: Linearization Techniques, Math. Progr., Vol. 30, 1984Google Scholar
  406. 19.
    Balas, E. and Mazzola, J. B.: Nonlinear 0–1 Programming, Part II: Dominance Relations and Algorithms, Math. Progr., Vol. 30, 1984Google Scholar
  407. 20.
    Spielberg, K.: Enumerative Methods in Integer Programming, Annals of Discrete Mathematics, Vol. 5, 1979, 139–183MathSciNetzbMATHGoogle Scholar
  408. 21.
    Guignard, M. and Spielberg, K.: Logical Reduction Methods in Zero-One Programming—Minimal Prefereed Variables, Oper. Res., Vol. 29, No. 1, 1981, 49–74MathSciNetzbMATHGoogle Scholar
  409. 22.
    Johnson, E. L. and Suhl, U.: Experiments in Integer Programming, Discrete Applied Mathematics, Vol. 2, 1980Google Scholar
  410. 23.
    Suhl, U.: Entwicklung von Algorithmen für ganzzahlige Optimierungsmodelle, Beiträge zur Unternehmensforschung, Heft 6, Freie Universität Berlin, 1975Google Scholar
  411. 24.
    Bouvier, B. et Messoumian, G.: Programmes lineaires en variables bivalentes, These, Univ. de Grenoble, 1965Google Scholar
  412. 25.
    Austin, L. M. and Ruparel, B. C.: The Mixed Cutting Plane Algorithm for All-Integer Programming, Computers and Oper. Res., Vol. 13, No. 4, 1986, 395–401MathSciNetzbMATHGoogle Scholar
  413. 26.
    Onyekwelu, D. C.: Computational Viability of a Constraint Aggregation Scheme for Integer Linear Programming Problems, Oper. Res., Vol. 31, 1983, 795–801zbMATHGoogle Scholar
  414. 27.
    Hanna, M. E.: An Advanced Start-Algorithm for All-Integer Programming, Ph.D. Diss., College of Business Admin., Texas Technical Univ., Lubbock, Texas, 1981Google Scholar
  415. 28.
    Dragan, I.: Un algorithme lexicographique pour la resolution des programmes lineaires en variables binaires, Mgmt. Sci., Vol. 16, No. 3, 1969, 246–252MathSciNetzbMATHGoogle Scholar
  416. 29.
    Guignard, M.: Methodes heuristiques de resolution d’un systeme d’inegalites lineaires en variables entires ou bivalentes, Publ. du Lab. de Calcul, Rapp. 32, Univ. de France, Lille, 1972Google Scholar
  417. 30.
    Gomory, R. E.: On the Relation Between Integer and Non-Integer Solutions to Linear Programs, Proceedings of the National Academy of Science, Vol. 53, 1965, 260–265MathSciNetzbMATHGoogle Scholar
  418. 31.
    Fleischmann, B.: Lösungsverfahren und Anwendungen der ganzzahligen linearen Optimierung, Thesis, Hamburg, 1967Google Scholar
  419. 32.
    Rubin, D. S.: On the Unlimited Number of Faces in Integer Hulls of Linear Programs with a Single Constraint, Oper. Res., Vol. 18, No. 5, 1970, 940–946zbMATHGoogle Scholar
  420. 33.
    Miller, C. E., Tucker, A. W., and Zemlin, R. A.: Integer Progr. Formulation of Travelling Salesman Probl., J. ACM, Vol. 7, 1960, 326–329MathSciNetzbMATHGoogle Scholar
  421. 34.
    Gomory, R. E.: Solving Linear Programming Problems in Integers in VIII.1. 6–61, 1960, 211–216MathSciNetGoogle Scholar
  422. 35.
    Gomory, R. E. and Baumol, W. J.: Integer Programming and Pricing, Econometrica, Vol. 28, 1960, 521–550MathSciNetzbMATHGoogle Scholar
  423. 36.
    Gomory, R. E. and Hoffman, A. J.: On the Convergence of an Integer Progr. Process, Na. Res. Logist. Quart., Vol. 10, 1963, 121–123zbMATHGoogle Scholar
  424. 37.
    Haldi, J.: 25 Integer Programming Test Problems, Working Paper No. 43, Graduate School of Business, Stanford Univ., 1966Google Scholar
  425. 38.
    Lemke, C. E. and Spielberg, K.: Direct Search Zero-One and Mixed Integer Progr., IBM New York Sci. Center, Report No. 39008, 1966Google Scholar
  426. 39.
    Balas, E.: An Additive Algorithm for Solving Linear Programs With Zero-One Variables, Operations Research, Vol. 13, 1965, 517–546MathSciNetGoogle Scholar
  427. 40.
    Bradley, G. H., Hammer, P. L., and Wolsey, L. A.: Coefficient Reduction for Inequalities in 0–1 Var., Math. Progr., Vol. 7, 1975, 263–282MathSciNetGoogle Scholar
  428. 41.
    Ibaraki, T., Liu, T. K., Baugh, C. R., and Muroga, S.: An Implicit Enumeration Progam for Zero-One Integer Programming, Int. J. of Computer and Information Sciences, Vol. 1, 1972, 75–92zbMATHGoogle Scholar
  429. 42.
    Bazaraa, M. S. and Elshafei, A. N.: On the Fictitious Bounds in Tree Search Algorithms, Mgmt. Sci., Vol. 23, 904–908Google Scholar
  430. 43.
    Hanna, M. E. and Austin, L. M.: An Advanced Start Algorithm for All-Integer Programming, Comput, Opns. Res., Vol. 12, 1985, 301–310MathSciNetzbMATHGoogle Scholar
  431. 44.
    Gomory, R. E.: Outline of an Algorithm for Integer Solutions to Linear Programs, Bull. Am. Math. Soc., Vol. 64, 1958, 275–278MathSciNetzbMATHGoogle Scholar
  432. 45.
    Ruparel, B. C.: The Bounded Enumeration Algorithm for All-Integer Programming, Ph.D. Diss., College of Business Admin., Taxes Techn. Univ., Lubbock, Texas, 1983Google Scholar
  433. 46.
    Balas, E.: Linear Programming with Zero-One Variables, Proc. Third Scientific Session on Statistics, Bucharest, December 5–7, 1963Google Scholar
  434. 47.
    Balas, E.: Duality and Pricing in Integer Programming, Stanford Univ., Stanford, Cal., 1967Google Scholar
  435. 48.
    Balinski, M. L.: On Finding integer Solutions to Linear Programs, Proc. of the IBM Sci. Symposium on Comb. Problems, 1965Google Scholar
  436. 49.
    Padberg, M. W.: Essays in Integer Programming, Ph.D. Thesis, Carnegie Mellon Univ., Pittsburgh, 1971Google Scholar
  437. 50.
    Glover, F.: New Results-on Equivalent Integer Programming Formulations, Mgmt. Sci., Vol. 8, 1975, 84–90MathSciNetzbMATHGoogle Scholar
  438. 51.
    Tomlin, J. A.: An Improved Branch-and-Bound Method for Integer Programming, Oper. Res., Vol. 19, No. 4, 1971, 1070–1075MathSciNetzbMATHGoogle Scholar
  439. 52.
    Piehler, J.: Ganzzahlige Linear Optimierung, Teubner Verlagsgesellschaft, Leipzig, 1970Google Scholar
  440. 53.
    Kreuzberger, H.: Ein Näherungsverfahren zur Bestimmung ganzzahliger Lösungen bei Linearen Optimierungsproblemen, Ablauf-und Planungsforschung, Vol. 9, 1968, 137–152Google Scholar
  441. 54.
    Burkard, R. E. and Stratmann, K. H.: Numerical Investigations on Quadratic Assignment Problems, Nay. Res. Logist. Quart., Vol. 25, 1979, 129–144Google Scholar
  442. 55.
    Wilhelm, M. R. and Ward, T. L.: Soving Quadratic Assignment Problems by Simulated Annealing, IIE Trans, Vol. 19, No. 1, 1987, 107–119Google Scholar
  443. 56.
    Lawler, E. L.: The Quadratic Assignment Problem, Mgmt. Sci., Vol. 9, 1963Google Scholar
  444. 57.
    Beale, E. M. L.: Integer Programming, in VIII.1. 1–67, 1977, 409–448MathSciNetGoogle Scholar
  445. 58.
    Kim, S. and Cho, S.-C.: Shadow Price in Integer Programming for Management Decision, Eur. J. Oper. Res. Vol. 37, No. 3, 1988, 328–335MathSciNetzbMATHGoogle Scholar
  446. 59.
    Scott, J. L.: On an Integral Transformation for Integer Programming, Oper. Res. Letters, Vol. 7, No. 4, 1988, 189–190zbMATHGoogle Scholar
  447. 60.
    Guignard, M., Spielberg, K., and Suhl, U.: Survey of Enumerative Methods for Integer Programming, Univ. of Pennsylvania, The Wharton School, Technical Report 41, 1978Google Scholar
  448. 61.
    Greenberg, H.: A Dynamic Programming Solution to Integer Linear Prog., J of Math. Anal. and Appl., Vol. 26, No. 2, 1969, 454–459zbMATHGoogle Scholar
  449. 62.
    Toyoda, Y.: A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Progr. Probl., Mgmt. Sci. Vol. 21, 1975, 1417MathSciNetzbMATHGoogle Scholar
  450. 63.
    Ram, B. (Balasubramanian) and Karwan, M. H.: Result in Surrogate Duality for Certain Integer Programming Problems, Math. Progr., Ser. A, Vol. 43, No. 1, Jan. 1989, 103–106MathSciNetzbMATHGoogle Scholar
  451. 64.
    Fisher, M. L.: The Lagrangean Relaxation Method for Solving Integer Programming Problems, Mgmt. Sci., Vol. 27, 1981, 1–18zbMATHGoogle Scholar
  452. 65.
    Geoffrion, A. M.: Lagrangean Relaxation for Integer Programming, Math. Progr. Studies, No. 2, 1974, 82–114MathSciNetGoogle Scholar
  453. 66.
    Beale, E. M. L.: Integer Programming, In VIII.1. 1–92, 1984, 1–24Google Scholar
  454. 67.
    Geoffrion, A. M. and Marsten, R. E.: Integer Programming Algorithms—A Framework and State-of-the-Art Survey, Mgmt. Sci., Vol. 18, 1972, 465–491MathSciNetzbMATHGoogle Scholar
  455. 68.
    Jeroslow, R. G. and Lowe, J. K.: Modelling with Integer Variables, Mathematical Programming Study, Vol. 22, 1984, 167–184MathSciNetzbMATHGoogle Scholar
  456. 69.
    Glover, F.: Improved Linear Integer Programming Formulations of Nonlin. Integer Probl., Mgmt. Sci., Vol. 22, No. 4, 1975, 455–459MathSciNetGoogle Scholar
  457. 70.
    Nauss, R. M.: Parametric Integer Programming, Univ. of Missouri Press, Columbia and London, 1979zbMATHGoogle Scholar
  458. 71.
    Hammer, P. L., Johnson, E. L., Korte, B. H., and Nemhauser, G. L.: Studies in Integer Programming, North-Holland, Amsterdam, 1977zbMATHGoogle Scholar
  459. 72.
    Senju, S. and Toyoda, Y.: An Approach to Linear Programming with 0–1 Variables, Mgmt. Sci., Vol. 15, 1968, 196–207Google Scholar
  460. 73.
    Glover, F.: A Multiple-Dual Algorithm for the Zero-One Integer Programming Problem, Oper. Res., Vol. 13, 1965, 879–919MathSciNetzbMATHGoogle Scholar
  461. 74.
    Glover, F. and Mulvey, J.: Equivalence of the 0–1 Integer Programming Problem to Discrete Generalized and Pure Networks, Oper. Res., Vol. 28, 1980, 829–835zbMATHGoogle Scholar
  462. 75.
    Granot, F. and Hammer, P. L.: On the Use of the Boolean Functions in 0–1 Programming, Math. Oper. Res., Vol. 12, 1972, 154–184Google Scholar
  463. 76.
    Hammer, P. L., Johnson, E. L., and Korte, B. H. (Eds.): Discrete Optimization, Annals of Discrete Mathematics, Vol. 5, 1979Google Scholar
  464. 77.
    Roodman, G. M.: Postoptimality Analysis in Zero-One Programming by Impl. Enumeration, Nay. Res. Log. Quart., Vol. 19, 1972, 435–447MathSciNetzbMATHGoogle Scholar
  465. 78.
    Frank, M. and Wolfe, P.: An Algorithm for Quadratic Programming, Naval Res. Log. Quarterly, Vol. 3, 1956, 95–110MathSciNetGoogle Scholar
  466. 79.
    Saaty, T. L.: Optimization in Integers and Related Extremum Problems. Mc Graw-Hill, New York, 1970Google Scholar
  467. 80.
    Wolsey, L. A.: Facets and Strong Valid Inequalities for Integer Programs, Oper. Res., Vol. 24, 1976, 367–372MathSciNetzbMATHGoogle Scholar
  468. 81.
    Radke, M. A.: Sensitivity Analysis in Discrete Optimization, Ph.D. Thesis, Univ. of California, Los Angeles, 1975Google Scholar
  469. 82.
    Nauss, R. M.: Parametric Integer Programming, Ph.D Thesis, University of California, Los Angeles, 1975Google Scholar
  470. 83.
    Geoffrion, A. M. and Nauss, R. M.: Parametric and Postoptimality Analysis in Integer Linear Programming, Mgmt. Science, Vol. 23, 1977Google Scholar
  471. 84.
    Wolsey, L. A.: Integer Programming Duality—Price Function and Sensitivity Analysis, Math. Progr., 1981, 173–195Google Scholar
  472. 85.
    Martin, R. K. and Sweeney, D. J.: An Ideal Column Algorithm for Integer Programs with Special Ordered Sets of Variables, Math. Progr., Vol. 26, 1983, 48–63MathSciNetzbMATHGoogle Scholar
  473. 86.
    Padberg, M. W.: Equivalent Knapsack-Type Formulations of Bounded Integer Linear Programs—An alternative Approach, Nay. Res. Logist. Quart., Vol. 19, 1972, 669–708MathSciNetGoogle Scholar
  474. 87.
    Ram, B. (Balasubramanian), Karwan, M. H. and Babu, A. J. G.: Aggregation of Constraints in Integer Programming, Eur. J. Oper. Res., Vol. 35, 1988, 216–227MathSciNetzbMATHGoogle Scholar
  475. 88.
    Cook, W., Gerards, A. M. H., Schrijver, A. and Trados, E.: Sensitivity Theorems in Integer Linear Programming, Math. Progr., Vol. 34, 1986, 251–264zbMATHGoogle Scholar
  476. 89.
    Cooper, M. W.: A Survey of Methods for Pure Nonlinear Integer Programming, Mgmt. Sci., Vol. 27, No. 3, 1981, 353–361zbMATHGoogle Scholar
  477. 90.
    Nemhauser, G. L. and Wolsey, L. A.: Integer and Combinatorial Programming, Wiley, New York, 1988Google Scholar
  478. 91.
    Fisher, M. L.: An Application Oriented Guide to Lagrangian Relaxation, Interfaces, Vol. 15, 1985, 10–21Google Scholar
  479. 92.
    Kendall, K. E. and Zionts, S.: Solving Integer Programming Problems by Aggregating Constraints, Oper. Res., Vol. 25, 1977, 346–351MathSciNetzbMATHGoogle Scholar
  480. 93.
    Hausmann, D. (Ed.): Integer Programming and Related Areas, Springer, Berlin, 1978zbMATHGoogle Scholar
  481. 94.
    Barahona, F., Jünger, M., and Reinelt, G.: Experiments in Quadratic 0–1 Programming, Math. Progr., Vol. 44, 1989, 127–137zbMATHGoogle Scholar
  482. 95.
    Barahona, F.: A Solvable Case of Quadratic 0–1 Programming, Discrete Applied Mathematics, Vol. 13, 1986, 23–26MathSciNetzbMATHGoogle Scholar
  483. 96.
    Pavlov, A. A.: Analysis of Complexity Estimates of Exact Algorithms for Solving the General Linear Integer Programming Problem, Soviet J. of Automation and Inf. Sci., Vol. 18, No. 5, 1985, 40–46zbMATHGoogle Scholar
  484. 97.
    Pavlov, A. A. and Gershgorin, A. Y.: A Method of Reducing a Linear Integer Programming Problem of General Form to a Knapsack Problem, Soviet J. of Autom. and Inf. Sci., Vol. 18, No. 5, 1985, 52–56MathSciNetGoogle Scholar
  485. 98.
    Reiter, S. and Rice, D. B.: Discrete Optimization Solution Procedures for Linear and Non-Linear Integer Programming Problems, Mgmt. Science, Vol. 12, No. 11, 1966, 829–850Google Scholar
  486. 99.
    Wolsey, L. A.: The b-Hull of an Integer Program, Discrete Applied Mathematics, Vol. 3, 1981, 193–201MathSciNetzbMATHGoogle Scholar
  487. 100.
    Balinski, M. L.: On Recent Developments in Integer Programming, in VIII.1. 1–133, 1970, 267–282MathSciNetGoogle Scholar
  488. 101.
    Pierce, J. F. and Lasky, J. S.: Improved Combinatorial Programming Algorithms for a Class of All-Zero-One Integer Progr. Probt., Mgmt. Sci., Vol. 19, 1973, 528–544MathSciNetzbMATHGoogle Scholar
  489. 102.
    Korte, B., Krelle, W. und Oberhofer, W.: Ein lexikographischer Suchalgorithums zur Lösung allg. ganzz Programmierungsaufgaben, Unternehmensforschung, Vol. 13, 1964, 73–98 und 172–192Google Scholar
  490. 103.
    Kreuzberger, H.: Numerische Erfahrungen mit einem heuristischen Verfahrn zur Lösung ganzzahliger linearer Optimierungsprobleme, Elektronische Datenverarbeitung, Vol. 12, 1970, 289–306Google Scholar
  491. 104.
    Lovasz, L: Graph Theory and Integer Programming, Ann. Discr. Math., Vol. 4, 1979, 141–158MathSciNetzbMATHGoogle Scholar
  492. 105.
    Jeroslow, R. G.: On Algorithms for Discrete Problems, Discr. Math., Vol. 7, 1974, 273–280MathSciNetzbMATHGoogle Scholar
  493. 106.
    Parker, R. G. and Rardin, R. L.: Discrete Optimization, Academic Press, New York, 1988zbMATHGoogle Scholar
  494. 107.
    Simeone, B: Quadratic 0–1 Programming, Ph.D. Diss., Univ. of Waterloo, 1979, Waterloo, CanadaGoogle Scholar
  495. 108.
    Adams, W. P. and Sherali, H. D.: A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems, Mgmt. Sci., Vol. 32, 1986, 1274–1290MathSciNetzbMATHGoogle Scholar
  496. 109.
    Wolsey, L. A.: Valid Inequalities and Superadditivity for 0–1 Integer Programs, Math. of Oper. Res., Vol. 2, No. 1, 1977, 66–77MathSciNetzbMATHGoogle Scholar
  497. 110.
    Wilson, J. M.: Generating Cuts in Integer Progr. with Families of Special Ordered Sets, Eur. J. Oper. Res., Vol. 46, 1990, 101–108zbMATHGoogle Scholar
  498. 1.
    Hadley, G.: Nonlinear and Dynamic Programming, Addison-Wesley Publishing Company, Reading, Mass., 1964zbMATHGoogle Scholar
  499. 2.
    Abadie, J. (Ed.): Nonlinear Programming, North-Holland Publ. Company, Amsterdam, 1967zbMATHGoogle Scholar
  500. 3.
    Abadie, J. (Ed.): Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970zbMATHGoogle Scholar
  501. 4.
    Kuenzi, H. P., Krelle, W. und Von Randow, R.: Nichtlineare Programmierung, 2. Auflage, Springer, Berlin, 1979Google Scholar
  502. 5.
    Mangasarian, O. L.: Nonlinear Progr., McGraw-Hill, New York, 1969Google Scholar
  503. 6.
    Fiacco, A. V. and Mc Cormick, G. P.: Nonlinear Programming—Sequential Unconstrained Minimization Techniques, John Wiley, New York, 1968zbMATHGoogle Scholar
  504. 7.
    Powell, M. J. D.: Recent Advances in Unconstrained Optimization, Math. Progr., Vol. 1, 1971, 26–57zbMATHGoogle Scholar
  505. 8.
    Powell, M. J. D. (Ed.): Nonlin. Optimiz., Acad. Press, London, 1981Google Scholar
  506. 9.
    Balas, E. and Mazzola, J. B.: Nonlinear 0–1 Programming, Part I: Linearization Techniques, Math. Progr., Vol. 30, 1984Google Scholar
  507. 10.
    Balas, E. and Mazzola, J. B.: Nonlinear 0–1 Programming, Part II: Dominance Relations and Algorithms, Math. Progr., Vol. 30, 1984Google Scholar
  508. 11.
    Wolfe, P.: The Simplex Method for Quadratic Programming, Econometrica, Vol. 27, No. 3, 1959, 382–398MathSciNetzbMATHGoogle Scholar
  509. 12.
    Dorn, W. S.: Duality in Quadratic Programming, Quarterly of Applied Mathematics, Vol. 18, 1960, 155–162MathSciNetzbMATHGoogle Scholar
  510. 13.
    Zangwill, W. I.: Convergence Conditions for Nonlinear Programming Algorithms, Mgmt. Sci., Vol. 16, No. 1, 1969, 1–13MathSciNetzbMATHGoogle Scholar
  511. 14.
    Faiacco, A. V. and Mc Cormick, G. P.: The Sequential Unconstrained Minimization Technique for Nonlinear Programming, a Primal-Dual Method, Mgmt. Sci., Vol. 10, No. 2, 1964, 360–364Google Scholar
  512. 15.
    Zoutendijk, G.: Methods of Feasible Directions, Elsevier Publ. Co., Amsterdam, 1960Google Scholar
  513. 16.
    Zoutendijk, G.: Nonlinear Programming—A Numerical Survey, SIAM J. on Control, Vol. 4, 1966, 194–210MathSciNetzbMATHGoogle Scholar
  514. 17.
    Rosen, J. B.: The Gradient Projection Method for Nonlinear Programming, Part I, Linear Constraints, J. Soc. Ind. Appt. Math., Vol. 8, 1960, 181–217zbMATHGoogle Scholar
  515. 18.
    Flak, J. E.: Lagrange Multipliers and Nonlinear Programming, Journal Math. Anal. Appt., Vol. 19, 1967, 141–159Google Scholar
  516. 19.
    Hestenes, M. R.: Multiplier and Gradient Methods, Journal Optim. Theory and Applications, Vol. 4, 1969, 303–320MathSciNetzbMATHGoogle Scholar
  517. 20.
    Rockafellar, R. T.: A Dual Approach to Solving Nonlinear Programming Problems by Unconstrained Optimization, Math. Progr. Vol.. 5, 1973, 354–373MathSciNetzbMATHGoogle Scholar
  518. 21.
    Curry, H. B.: The Method of Steepest Descent for Non-Linear Minimization Probl., Quart. Appl. Math., Vol. 2, No. 3, 1944, 250–261MathSciNetGoogle Scholar
  519. 22.
    Kuenzi, H. P. and Oettli, W.: Integer Quadratic Programming, in VIII.1. 1–32, 1963, 303–308Google Scholar
  520. 23.
    Himmelblau, D. M.: Appl. Nonlin. Progr., McGraw-Hill, New York, 1972Google Scholar
  521. 24.
    Arrow, K. J., Hurwicz, L. and Uzawa, H.: Studies in Linear and Non-Linear Programming, Stanford Univ. Press, Stanford, CA., 1972Google Scholar
  522. 25.
    Barankin, E. W. and Dorfman, R.: On Quadratic Programming, University of California Press, Berkeley, Cal., 1958Google Scholar
  523. 26.
    Beale, E. M. L.: On Quadratic Programming, Naval Research Logistics Quarterly, Vol. 6, 1959, 227–244MathSciNetGoogle Scholar
  524. 27.
    Kleibohm, K.: Ein Verfahren zur approximativen Lösung von konvexen Programmen, Diss., Zürich, 1966Google Scholar
  525. 28.
    Wilson, R. B.: A Simplicial Method for Concave Programming, Havard Univ., Graduate School of Bus. Admin., Ph.D. Thesis, 1963Google Scholar
  526. 29.
    Wolfe, P.: A Duality Theorem for Nonlinear Programming, Quarterly Applied Mathematics, Vol. 19, 1961, 239–244MathSciNetzbMATHGoogle Scholar
  527. 30.
    Wolfe, P.: Accelerating the Cutting Plane Method for Nonlinear Programming, J. SIAM, Vol. 9, 1961, 481–488MathSciNetzbMATHGoogle Scholar
  528. 31.
    Wolfe, P.: Some Simplex–Like Nonlinear Programming Procedures, Operations Research, Vol. 10, 1962, 438–447MathSciNetzbMATHGoogle Scholar
  529. 32.
    Wolfe, P.: Convergence Conditions for Ascent Methods, SIAM Review, Vol. 11, 1969, 226–235MathSciNetzbMATHGoogle Scholar
  530. 33.
    Wolfe, P.: On the Convergence of Gradient Methods under Constraint IBM J. of Res. and Dev., Vol. 16, No. 4, 1972, 407–411MathSciNetzbMATHGoogle Scholar
  531. 34.
    Martos, B.: Nonlinear Programming Theory and Methods, American Elsevier Publ. Co., New York, 1975Google Scholar
  532. 35.
    Maennig, H. G.: Nichtlineare and ganzzahlige Optimierung. Die Bewältigung nichtlin. Teilprobleme innerhalb umfassender LP-Modelle, in VIII.1. 1–55, 1981Google Scholar
  533. 36.
    Kreko, B.: Optimierung—Nichtlineare Modelle, VEB Deutscher Verlag der Wissenschaften, Berlin, 1974zbMATHGoogle Scholar
  534. 37.
    Miller, C. E.: The Simplex Method for Local Separable Programming, in VIII.1. 1–29, 1963, 89–110Google Scholar
  535. 38.
    Beale, E. M. L.: Branch-and-Bound Methods for Numerical Optimization of Non-Convex Functions, in VIII.1. 1–64, 1980, 11–20MathSciNetGoogle Scholar
  536. 39.
    Beale, E. M. L.: Some Uses of Mathematical Programming Systems to Solve Problems That Are Not Linear, Oper. Res. Quart., Vol. 26, 1975, 609–618MathSciNetzbMATHGoogle Scholar
  537. 40.
    Beale, E. M. L. and Tomlin, J. A.: Special Facilities in a General Mathematical Programming System for Non-Convex Problems Using Ordered Sets of Variables, in VIII.1. 1–65, 1969Google Scholar
  538. 41.
    Escudero, L. F.: Special Sets in Mathematical Programming State-of-the-Art Survey, in VIII.1. 1–66, 1979, 535–551MathSciNetGoogle Scholar
  539. 42.
    Beale, E. M. L. and Forrest, J. J. H.: Global Optimization Using Special Ordered Sets, Math. Progr., Vol. 10, 1976, 52–69MathSciNetzbMATHGoogle Scholar
  540. 43.
    Forsythe, G. E.: Computing Constrained Minima with Lagrange Multipliers, SIAM Journal, Vol. 3, 1958, 173–178MathSciNetGoogle Scholar
  541. 44.
    Kuhn, H. W. and Tucker, A. W.: Nonlinear Programming, Proceedings of the 2nd Berkeley Symposium on Math. Statistics and Probability, Univ. of California Press, 1951, 481–492Google Scholar
  542. 45.
    Dorn, W. S.: On Lagrange Multipliers and Inequalities, Operations Research, Vol. 9, 1961, 95–104MathSciNetzbMATHGoogle Scholar
  543. 46.
    Dorn, W. S.: A Duality Theorem for Convex Programs, IBM Research Journal, Vol. 4, 1960, 407–413MathSciNetzbMATHGoogle Scholar
  544. 47.
    Beale, E. M. L.: On Minimizing a Convex Function Subject to Linear Inequalities, Jour. Royal Statistic Soc., Vol. 17B, 1955, 173–184MathSciNetzbMATHGoogle Scholar
  545. 48.
    Thiel, H. and Van de Panne, C.: Quadratic Progr. as an Extension of Classical Quadratic Maximization, Mgmt. Sci., Vol. 7, 1960, 1–20Google Scholar
  546. 49.
    Lemke, C. E.: A Method of Solution for Quadratic Programs, Management Science, Vol. 8, 1962, 442–453MathSciNetzbMATHGoogle Scholar
  547. 50.
    Tanaka, Y., Fukushima, M. and Ibaraki, T.: Globally Convergent SQP (Successive Quadratic Programming) Method for Semi-Infinite Nonlinear Optimiz., J. Comp. Appl. Math., Vol. 23, 1988, 141–153MathSciNetzbMATHGoogle Scholar
  548. 51.
    Fan, Y., Sarkar, S., and Lasdon, L.: Experiments with Successive Quadratic Progr. Algorithms, J. Optim. Theory Appl., Vol. 56, No. 3, 1988, 359–383MathSciNetzbMATHGoogle Scholar
  549. 52.
    Tanaka, Y., Fukushima, M. and Ibaraki, T.: comparative Study of Several Semi-Infinite Nonlinear Programming Algorithms, Eur. J. Oper. Res., Vol. 36, No. 1, 1988, 92–100MathSciNetzbMATHGoogle Scholar
  550. 53.
    Hearn, D. W., Lawphongpanich, S., and Ventura, J. A.: Restricted Simplicial Decomposition—Computation and Extensions, Math. Progr. Study, No. 31, 1987, 99–118MathSciNetzbMATHGoogle Scholar
  551. 54.
    Fletcher, R.: An Efficient, Globally Convergent, Algorithm for Unconstrained and Linearly Constrained Optimization Problems, 7th Int. Math. Progr. Symp., The Hague, Netherlands, 1970Google Scholar
  552. 55.
    Fletcher, R. and Powell, M. J. D.: A Rapidly Convergent Descent Method for Minimization, The Computer Journal, Vol. 6, 1963Google Scholar
  553. 56.
    Rosen, J. B.: The Gradient Projection Method for Nonlinear Programming, Part II, Nonlin. Constraints, SIAM J., Vol. 9, 1961, 514–532Google Scholar
  554. 57.
    Goldfeld, S. M., Quandt, R. E., and Trotter, H. F.: Maximization by Quadratic Hill-Climbing, Econometrica, Vol. 34, 1966, 541MathSciNetzbMATHGoogle Scholar
  555. 58.
    Goldfarb, D. and Lapidus, L.: Conjugate Gradient Method for Non-Linear Programming Problems with Linear Constraints, I.and E. C. Fundamentals. Vol. 7, 1968, 142Google Scholar
  556. 59.
    Pearson, J. D.: Variable Metric Methods of Minimization, Computer Journal, Vol. 12, 1969, 171MathSciNetzbMATHGoogle Scholar
  557. 60.
    Fletcher, R. and Mc Cann, A. P.: Acceleration Techniques for Non-Linear Programming, in VIII.1. 1–85, 1969Google Scholar
  558. 61.
    Mc Cormick, G. P.: Penalty-Function Versus Non-Penalty-Function Methods for Constrained Nonlinear Programming Problems, Math. Progr., Vol. 1, 1971, 217–238Google Scholar
  559. 62.
    Mangasarian, O. L.: Nonlinear Programming—Theory and Computation, in VIII.1. 1–86, 1971, 245–265Google Scholar
  560. 63.
    Zhang, J., Kim, N.-H. and Lasdon, L. S.: An Improved Successive Linear Programming Algorithm, Mgmt. Science, Vol. 31, 1985, 1312–1331MathSciNetzbMATHGoogle Scholar
  561. 64.
    Robinson, S. M.: A Quadratically Convergent Algorithm for General Nonlinear Progr. Problems, Math. Progr., Vol. 3, 1972, 145–156zbMATHGoogle Scholar
  562. 65.
    Murtagh, B. A. and Saunders, M.: A Projected Lagrangean Algorithm and its Implementation for Sparse Nonlinear Constraints, Math. Progr. Study, No. 16, 1982, 84–117MathSciNetzbMATHGoogle Scholar
  563. 66.
    Ecker, J. G. and Kupferschmid, M.: An Ellipsoid Algorithm for Nonlinear Programming, Math. Progr., Vol. 27, 1983, 83–106MathSciNetzbMATHGoogle Scholar
  564. 67.
    Gupta, O. K. and Ravindran. A.: Branch-and-Bound Experiments in Convex Nonlinear Integer Progr., Mgmt. Sci., Vol. 31, 1985, 1533MathSciNetzbMATHGoogle Scholar
  565. 68.
    Fan, Y., Sarkar, S. and Lasdon, L.: Experiments with Successive Quadratic Programming Algorithms, Working Paper, Dept. of General Business, the Univ. of Texas, Austin, Texas, 1985Google Scholar
  566. 69.
    Baker, T. E. and Lasdon, L. S.: Successive Linear Programming at Exxon Mgmt. Sci., Vol. 31, 1985, 264–274zbMATHGoogle Scholar
  567. 70.
    Falk, J. E.: A Constrained Lagrangean Approach to Nonlinear Programming, Ph.D. Diss., Univ. of Michigan, An Arbor, 1965Google Scholar
  568. 71.
    Ryan, D. M.: Transformation Methods in Nonlinear Programming, Ph.D. Diss., Australian National Univ., 1971Google Scholar
  569. 72.
    Fletcher, R.: A General Quadratic Programming Algorithm, J. of the Institute of Mathematics and its Appl., Vol. 7, 1971, 76–91MathSciNetzbMATHGoogle Scholar
  570. 73.
    Hartley, H. O.: Nonlinear Programming by the Simplex Method, Econometrica, Vol. 29, 1961, 223–237MathSciNetzbMATHGoogle Scholar
  571. 74.
    Lemke, C. E.: The Constraint Gradient Method of Linear Programming, J. of the Soc. for Ind. and Appl. Math., Vol. 9, No. 1, 1961, 1–17MathSciNetzbMATHGoogle Scholar
  572. 75.
    Abdadie, J. and Carpentier, J.: Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, in VIII.1. 1–85, 1969Google Scholar
  573. 76.
    Abadie, J. and Guigou, J.: Numerical Experiments with the GRG Method, in VIII.1. 5–03, 1970, 529–536MathSciNetGoogle Scholar
  574. 77.
    Ech-Cherif, A., Ecker, J. G., and Kupferschmid, M.: Numerical Investigation of Rank-Two Ellipsoid Algorithms for Nonlinear Programming, Math. Progr. Ser. A., Vol. 43, No. 1, 1989, 8795MathSciNetGoogle Scholar
  575. 78.
    Ritter, K.: On the Rate of Superlinear Convergence of a Class of Variable Metric Methods, Numerische Math., Vol. 35, 1980, 293–313MathSciNetzbMATHGoogle Scholar
  576. 79.
    Hock, W. and Schittkowski, K.: Test Examples for Nonlinear Programming, Springer, Berlin, 1981zbMATHGoogle Scholar
  577. 80.
    Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H.: Model Building and Practical Aspects of Nonlinear Programming, in VIII.1. 1–92, 1984, 210–247Google Scholar
  578. 81.
    Wright, M. H.: Numerical Methods for Nonlinearly Constrained Optimization, Ph.D. Thesis, Stanford Univ., 1976Google Scholar
  579. 82.
    Tone, K.: Revisions of Constraint Approximations in the Successive QP Method for Nonlin. Progr., Math. Progr., Vol. 26, 1983, 144–152MathSciNetzbMATHGoogle Scholar
  580. 83.
    Brent, R. P.: Algorithms for Minimization Without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, 1973Google Scholar
  581. 84.
    Stoer, J.: Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Progr., in VIII.1. 1–92, 1984, 1965, 165–207Google Scholar
  582. 85.
    Ritter, K.: A Method for Solving Problems with a Nonconcave Quadratic Objective Function, Zeitschr, für Wahrscheinlichkeits Theorie and verwandte Gebiete, Vol. 4, 1966, 340–351MathSciNetzbMATHGoogle Scholar
  583. 86.
    Boot, J. C. G.: Quadratic Progr., North Holland, Amsterdam, 1964Google Scholar
  584. 87.
    Schaible, S.: Beiträge zur Quasikonvexen Programmierung, Dissertation, Universität Köln, 1971Google Scholar
  585. 88.
    Martos, B.: The Direct Power of Adjacent Vertex Programming Methods, Mgmt. Sci., Vol. 12, 1965, 241–252MathSciNetzbMATHGoogle Scholar
  586. 89.
    Van de Panne, C. and Whinston, A.: Simplicial Methods for Quadratic Programming, Nay. Res. Logist. Quart., Vol. 11, 1964, 273–302zbMATHGoogle Scholar
  587. 90.
    Zowe, J.: Nondifferentiable Optimization, in VIII.1. 1–92, 1984Google Scholar
  588. 91.
    Bertsekas, D. P.: Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982zbMATHGoogle Scholar
  589. 92.
    Wenger, P.: A Non-Linear Extension of the Simplex-Method, Management Science, Vol. 7, 1960, 43–55MathSciNetGoogle Scholar
  590. 93.
    Shanno, D. F. and Phua, K. H.: Numerical Experience with Sequential Quadratic Programming Algorithms for Equality Constrained Nonlinear Programming, ACM Trans. Math. Software, Vol. 15, No. 1, 1989, 49–63MathSciNetzbMATHGoogle Scholar
  591. 94.
    Escudero, L. F.: S3 Sets—An Extension of the Beale-Tomlin Special Ordered Sets, Math. Progr., Vol. 42, No. 1, 1988, 113–123MathSciNetzbMATHGoogle Scholar
  592. 95.
    Kennedy, D.: Some Branch-and-Bound Techniques for Nonlinear Optimization, Math. Progr., Vol. 42, No. 1, 1988, 147–157zbMATHGoogle Scholar
  593. 96.
    Dennis, J. E. Jr.: A User’s Guide to Nonlinear Optimization Algorithms, Proc. of the IEEE, Vol. 72, No. 12, 1984, 1765–1776Google Scholar
  594. 97.
    Avriel, M.: Nonlinear Programming—Analysis and Methods, Prentice-Hall, Englewood Cliffs, N. J., 1976zbMATHGoogle Scholar
  595. 98.
    Dennis, J. E. Jr. and Schnabel, R. B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englwood Cliffs, N. J., 1983zbMATHGoogle Scholar
  596. 99.
    Bazaraa, M. S. and Shetty, C. M.: Nonlinear Programming—Theory and Algorithms, Wiley, New York, 1979zbMATHGoogle Scholar
  597. 100.
    Bazaraa, M. S. and Sherali, H. D.: On the Choice of Step Size in Subgradient Optimiz., Eur. J. of Oper. Res., Vol. 7, 1981, 380–388MathSciNetzbMATHGoogle Scholar
  598. 101.
    Han, S.-P.: Superlinearly Convergent Variable Metric Algorithms for General Nonlin. Progr. Probl., Math. Progr., Vol. 11, 1976, 263Google Scholar
  599. 102.
    Han, S.-P.: A Globally Convergent Method for Nonlinear Programming, J. Optimization Theory and Applications, Vol. 22, 1977, 297–309MathSciNetzbMATHGoogle Scholar
  600. 103.
    Veinott, A. F.: The Supporting Hyperplane Method for Unimodal Programming, Oper. Res., Vol. 15, 1967, 147–152MathSciNetzbMATHGoogle Scholar
  601. 104.
    Topkis, D. M. and Veinott, A. F.: On the Convergence of Some Feasible Direction Algorithms for Nonlinear Programming, SIAM J. on Control, Vol. 5, 1967, 268–279MathSciNetzbMATHGoogle Scholar
  602. 105.
    Di Pillo, G. and Grippo, L.: A New Class of Augmented Lagrangians in Nonlin. Progr., SIAM J. Control Optim., Vol. 17, 1979, 618–628zbMATHGoogle Scholar
  603. 106.
    Fletcher, R.: A New Approach to Variable Metric Algorithms, Comput. J., Vol. 13, 1970, 317–322zbMATHGoogle Scholar
  604. 107.
    Palacios Gomez, F., Lasdon, L., and Engquist, M.: Nonlinear Optimization by Successive Linear Programming, Mgmt. Sci., Vol. 28, 1982, 1106–1120Google Scholar
  605. 108.
    Pardalos, P. M. and Rosen, J. B.: Methods for Global Concave Minimization—A Bibliographic Survey, SIAM Review, Vol. 28, No. 3, 1986, 367–379MathSciNetzbMATHGoogle Scholar
  606. 109.
    Pardalos, P. M. and Rosen, J. B.: Constrained Global Optimization—Algorithms and Applications, Springer, Berlin, 1987zbMATHGoogle Scholar
  607. 110.
    Kalantari, B.: Large-Scale Global Minimization of Linearly Constrained Concave Quadratic Functions and Related Problems, Ph.D. Diss., Univ. of Minnesota, Minneapolis, MN., 1984Google Scholar
  608. 111.
    Horst, R.: An Algorithm for Nonconvex Programming Problems, Math. Progr., Vol. 10, 1976, 312–321MathSciNetzbMATHGoogle Scholar
  609. 112.
    Mangasarian, O. L., Meyer, R. R., and Robinson, S. M. (Eds.): Nonlinear Programming, Academic Press, New York, 1975zbMATHGoogle Scholar
  610. 113.
    Fletcher, R.: Practical Methods of Optimization, Vol. 1, Unconstrained Optimization, Wiley, New York, 1980zbMATHGoogle Scholar
  611. 114.
    Fletcher, R.: Practical Methods of Optimization, Vol. 2, Constrained Optimization, Wiley, New York, 1980zbMATHGoogle Scholar
  612. 115.
    Poljak, B. T.: A General Method of Solving Extremum Problems, Soviet Mathematics, Vol. 8, 1967, 593–597Google Scholar
  613. 116.
    Duffin, R. J., Peterson, E. L., and Zener, C. M.: Geometric Programming—Theory and Application, Wiley, New York, 1968Google Scholar
  614. 117.
    Steihaug, T.: Quasi-Newton Methods for Large Scale Nonlinear Problems, Ph.D. Thesis, Yale Univ., New Haven, CT., 1981Google Scholar
  615. 118.
    Cottle, R. and Lemke, C. (Eds.): Nonlinear Programming, AMS, Providence, RI., 1976zbMATHGoogle Scholar
  616. 119.
    Fonticilla, R.: A General Convergence Theory for a Class of Quasi-Newton Methods for Constrained Optimization, Ph.D. Thesis, Dept. of Math Science, Rice Univ. Houston, TX., 1983Google Scholar
  617. 120.
    Bryoden, C. G.: A Class of Methods for Solving Nonlinear Simultaneous Equations, Math. of Comp., Vol. 19, 1965, 577–593Google Scholar
  618. 121.
    Goldstein, A. A. and Price, J. F.: On Descent from Local Minima, Math. of Comp., Vol. 25, 1971, 569–574MathSciNetzbMATHGoogle Scholar
  619. 122.
    Kelley, J. E.: The Cutting Plane Method for Solving Convex Programs, SIAM J. Appl. Math., Vol. 8, 1960, 703–712MathSciNetGoogle Scholar
  620. 123.
    Duffin, R. J.: Linearizing Geometric Programs, SIAM Review, Vol. 12, 1970, 211–227MathSciNetzbMATHGoogle Scholar
  621. 124.
    Rijckaert, M. J. and Walraven, E. J. C.: Reflections on Geometric Programming, in VIII.1. 1–92, 1984, 141–161Google Scholar
  622. 125.
    Powell, M. J. D.: Algorithms for Nonlinear Constraints that use Lagrangean Functions, Math. Progr., Vol. 14, 1978, 224–248zbMATHGoogle Scholar
  623. 126.
    Avriel, M. Dembo, R. and Passy, U.: Solution of Generalized Geometric Programs, Int. J. of Num. Meth. in Eng., Vol. 9, 1975, 149–169MathSciNetzbMATHGoogle Scholar
  624. 127.
    Rijckaert, M. J. and Debroey, V.: A Bibliographical Survey of Geometric Programming, Katholieke Universiteit Leuven, Instituut voor Chemie-Ingenieurstechniek, Report CE-RM-8205, 1983Google Scholar
  625. 128.
    Rijckaert, M. J. and Martens, X. M.: A Comparison of Generalized Geometr. Progr. Algorithms, J. Optim. Theory Appl., 1978, 205–242Google Scholar
  626. 129.
    Mc Cormick, G. P.: Nonlinear Programming, Wiley, New York, 1983Google Scholar
  627. 130.
    Bremmerman, H.: A Method for Unconstrained Global Optimization, Math. Biosciences, Vol. 9, 1970, 1–15Google Scholar
  628. 131.
    Lemarechal, C. and Mifflin, R. (Eds.): Nonsmooth Optimization, Pergamon Press, New York, 1978Google Scholar
  629. 132.
    Shubert, B. O.: A Sequential Method Seeking the Global Maximum of a Function, SIAM J. on Numerical Analysis, Vol. 9, 1972, 379–388MathSciNetzbMATHGoogle Scholar
  630. 133.
    Lootsma, F. A. (Ed.): Numerical Methods of Nonlinear Optimization, Academic Press, London, 1972Google Scholar
  631. 134.
    Wolfe, P.: A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions, Math. Progr., Vol. 3, 1975, 145–173Google Scholar
  632. 135.
    Ben-Israel, A., Ben-Tal, A., and Zlobec, S.: Optimality in Nonlinear Programming, Wiley, New York, 1981zbMATHGoogle Scholar
  633. 136.
    Gill, P. E. and Murray, W.: Numerical Methods for Constrained Minimization, Academic Press, New York, 1974Google Scholar
  634. 137.
    Faicco, A. V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983Google Scholar
  635. 138.
    Powell, M. J. D.: A Survey of Numerical Methods for Unconstrained Optimization, SIAM Review, Vol. 12, 1970, 79–97MathSciNetzbMATHGoogle Scholar
  636. 139.
    Davidon, W. C. Variable Metric for Minimization, A. E. C. Research and Development Report, ANL-5990, 1959Google Scholar
  637. 140.
    Mc Cormick. G. P.: the Projective SUMT Method for Convex Programming, Math. of Oper. Res., Vol. 14, No. 2, 1989, 203–223Google Scholar
  638. 141.
    Ahlfeld, D. P., Dembo, R. S., Mulvey, J. M., and Zenios, S. A.: Nonlinear Programming on Generalized Networks, ACM Trans. Math. Software, Vol. 13, 1987, 350–367MathSciNetGoogle Scholar
  639. 142.
    Murtagh, B. A. and Saunders, M.: Large Scale Linearly Constrained Optimization, Math. Progr., Vol. 14, 1978, 41–72MathSciNetzbMATHGoogle Scholar
  640. 143.
    Gupta, N.: A Higher Than First Order Algor. for Nonsmooth Constr. Optimiz., Diss., Washington State Univ., Pullman, 1985Google Scholar
  641. 144.
    Ye, Y. and Tse, E.: An Extension of Karmarkar’s Projective Algorithm for Convex Quadratic Programming, Math. Progr., Vol. 44, 1989, 157–179MathSciNetzbMATHGoogle Scholar
  642. 145.
    Abadie, J.: the GRG Method for Nonlinear Programming, in X-157, 1978, 335–362Google Scholar
  643. 146.
    Fletcher, R. and Reeves, C. M.: Function Minimization by Conjugate Gradients, Comput. J., Vol. 7, No. 2, 1964, 145–154MathSciNetGoogle Scholar
  644. 147.
    Boot, J. C. G.: Quadratic Programming, Algorithms—Anomalies—Applications, Rand McNally and Co., Chicago, 1964zbMATHGoogle Scholar
  645. 148.
    Powell, M. J. D.: A Fast Algorithm for Nonlinearly Constrained Optimization Calculation, in VIII. 2–39, 1977Google Scholar
  646. 149.
    Burke, J. V. and Hann, S.-P.: A Robust Sequential Quadratic Programming Method, Math. Progr., Vol. 43, 1989, 277–303zbMATHGoogle Scholar
  647. 150.
    Burke, J. V.: Methods for Solving Generalized Inequalities with Applications to Nonlinear Programming, Ph.D. Thesis, Dept. of Math., Univ. of Illinois, Urbana-Champaign, 1983Google Scholar
  648. 151.
    Fletcher, R. and Sainz de la Maza, E.: Nonlinear Programming and Nonsmooth Optimization by Successive Linear Programming, Math. Progr., Vol. 43, 1989, 215–256MathSciNetGoogle Scholar
  649. 152.
    Sainz de la Maza, E.: Nonlinear Programming Algorithms Based on LI Linear Programming and Reduced Hessian Approximations, Ph.D. Thesis, Dept. of Math. Science, Univ. of Dundee, Scotland, 1987Google Scholar
  650. 153.
    Dembo, R. S., Eisenstat, S. C., and Steihaug, T.: Inexact Newton Methods, SIAM J. Numer. Analysis, Vol. 19, 1982, 400–408MathSciNetzbMATHGoogle Scholar
  651. 154.
    Dembo, R. and Steihaug, T.: Truncated Newton Methods for Large Scale Optimization, Math. Progr., Vol. 26, 1983, 190–212MathSciNetzbMATHGoogle Scholar
  652. 155.
    Tomlin, J. A.: A Suggested Extension of Special Ordered Sets to Non-Separable Non-Convex Programming Problems, in VIII.1. 6–226, 1981, 359–370MathSciNetGoogle Scholar
  653. 156.
    Adby, P. R. and Dempster, M. A. H.: Introduction to Optimization Methods, Chapman and Hall, London, 1974zbMATHGoogle Scholar
  654. 157.
    Beveridge, G. S. and Schechter, R. S.: Optimization—Theory and Practice, McGraw-Hill, New York, 1970zbMATHGoogle Scholar
  655. 158.
    Aoki, M.: Intr. to Optimization Techn., Macmillan, New York, 1971Google Scholar
  656. 159.
    Bazaraa, M. S. and Spingarn, J.: Mathematical Programming with and without Differentiability, Georgia Inst. of Techn., School of Industrial and Systems Engineering, Atlanta, 1989Google Scholar
  657. 160.
    Rosen, J. B., Mangasarian, O. L., and Ritter, K. (Eds.): Nonlinear Programming, Academic Press, New York, 1970zbMATHGoogle Scholar
  658. 161.
    Whittle, P.: Optimization under Constraints—Theory and Applications of Nonlinear Programming, Wiley, London, 1971zbMATHGoogle Scholar
  659. 162.
    Benson, H. P.: A Finite Algorithm for Concave Minimization over a Polyhedron, Nay. Res. Logist. Quart., Vol. 32, 1985, 165–177MathSciNetzbMATHGoogle Scholar
  660. 163.
    Chamberlain, R. M.: The Theory and Application of Variable Metric Methods to Constrained Optimization Problems, Ph.D. Diss., Univ. of Cambridge, 1980Google Scholar
  661. 164.
    Chamberlain, R. M.: Some Examples of Cycling in Variable Metric Algorithms for Constrained Optimization, Math. Progr., Vol. 16, 1979, 378–383MathSciNetzbMATHGoogle Scholar
  662. 165.
    Dinkelbach, W.: On Nonlinear Fractional Programming, Management Science, Vol. 13, 1967, 492–498MathSciNetzbMATHGoogle Scholar
  663. 166.
    Rockafellar, R. T.: Generalized Subgradients in Mathematical Programming, in VIII.1. 1–16, 1983, 368–390MathSciNetGoogle Scholar
  664. 167.
    Rockafellar, R. T.: The Theory of Subgradients and its Applications to Problems of Optimization—Convex and Nonconvex Functions, Heldermann-Verlag, West-Berlin, 1981zbMATHGoogle Scholar
  665. 168.
    Fletcher, R.: Penalty Functions, in VIII.1. 1–16, 1983, 86–114Google Scholar
  666. 169.
    Zangwill, W. I.: Nonlinear Programming Via Penalty Functions, Management Science, Vol. 13, 1961, 34–358Google Scholar
  667. 170.
    Store, J.: Conjugate Gradient Type Methods, in VIII.1. 1–16, 1983, 540–565Google Scholar
  668. 171.
    Hestenes, M. R.: Conjugate Direction Methods in Optimization, Springer, Berlin, 1980zbMATHGoogle Scholar
  669. 172.
    Hestenes, M. R. and Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Nat. Bureau of Standards, Vol. 49, 1952, 409–436MathSciNetzbMATHGoogle Scholar
  670. 173.
    Poore, A. B. and Al-Hassan, Q.: The Expanded Lagrangian System for Constrained Optimization Problems, SIAM J. of Control and Optimization, Vol. 26, 1988, 417–427MathSciNetzbMATHGoogle Scholar
  671. 174.
    Lazimy, R.: Mixed-Integer Quadratic Programming, Math. Prog., Vol. 22, 1982, 332–349MathSciNetzbMATHGoogle Scholar
  672. 175.
    Lazimy, R.: Improved Algorithm for Mixed-Integer Quadratic Programs and a Computational Study, Math. Prog., Vol. 32, 1985, 100–113MathSciNetzbMATHGoogle Scholar
  673. 176.
    Ferris, M. C.: Iterative Linear Programming Solution of Convex Programs, Journal of Optim. Theory and Appl., Vol. 65, No. 1, 1990, 53–65MathSciNetzbMATHGoogle Scholar
  674. 177.
    Eaves, B. C., Gould, F. J., Peitgen, H. O., and Todd, M. J. (Eds.): Homotopy Methods and Global Convergence, Plenum Press, New York, 1983zbMATHGoogle Scholar
  675. 178.
    Dorn, W. S.: Non-Linear Programming—A Survey, Mgmt. Sci., Vol. 9, 1963, 171–208MathSciNetzbMATHGoogle Scholar
  676. 179.
    Pfranger, R.: Ein heuristisches Verfahren zur global Optimierung, Unternehmensforschung, Vol. 14, No. 1, 1970, 27–50zbMATHGoogle Scholar
  677. 180.
    Yao, Y.: Dynamic Tunneling Algorithm for Global Optimization, IEEE Trans. Syst. Man and Cybern., Vol. 19, No. 5, 1989, 1222–1230Google Scholar
  678. 181.
    Levy, A. V. and Montalvo, A.: The Tunneling Algorithm for the Global Minimization of Functions, SIAM J. on Scientific and Statistical Comp., Vol. 6, No. 1, 1985, 15–29MathSciNetzbMATHGoogle Scholar
  679. 1.
    Riordan, J.: An Introduction to Combinatorial Analysis, Chapman and Hall, London, 1958zbMATHGoogle Scholar
  680. 2.
    Riordan, J.: Combinatorial Identities, Wiley, New York, 1968zbMATHGoogle Scholar
  681. 3.
    Netto, E.: Lehrbuch der Combinatorik, Chelsea Publ. Co., New YorkGoogle Scholar
  682. 4.
    Klee, V.: Combinatorial Optimization—What is the State of the Art?, Math. Oper. Res., Vol. 5, No. 1, 1980Google Scholar
  683. 5.
    Christofides, N., Mingozzi, A., Toth, P., and Sandi, C. (Editors): Combinatorial Optimization, Wiley, N. Y., 1979zbMATHGoogle Scholar
  684. 6.
    Liu, C. L.: Introduction to Combinatorial Mathematics, McGraw-Hill, New york, 1968zbMATHGoogle Scholar
  685. 7.
    Held, M., Hoffman, A. J., Johnson, E.L., and Wolfe, P.: Aspects of the Traveling Salesman Problem, IBM J. of Res. and Dev., Vol. 28, No. 4, 1984, 476–486MathSciNetzbMATHGoogle Scholar
  686. 8.
    Allison, D. C. S. and Noga, M. T.: The LI Travelling Salesman Problem, Information Processing Letters (Netherlands), Vol. 18, No. 4, 1984Google Scholar
  687. 9.
    Martello, S. and Toth, P.: A Mixture of Dynamic Programming and Branch and Bound for the Subset Sum Problem, Mgmt. Sci., Vol. 30, No. 6, 1984Google Scholar
  688. 10.
    Kozeratskaya, L. N., Lebdeva, T. T., and Sergienko, I. V.: Stability, Parametric, and Postoptimality Analysis of Discrete Optimization Problems, Cybernetics, Vol. 19, No. 4, 1983Google Scholar
  689. 11.
    Grötschel, M., Lovasz, L., and Schrijver, A.: The Ellipsoid Method and its Consequences in Combinatorial Optimization, Combinatorica, Vol. 1, No. 2, 1981Google Scholar
  690. 12.
    Brown, G. G. and Mc Bride, R. D.: Solving Generalized Networks, Mgmt. Sci., Vol. 30, No. 12, 1984Google Scholar
  691. 13.
    Picard, J.-C. and Queyranne, M.: Selected Applications of Minimum Cuts in Networks, INFOR, Vol. 20, No. 4, November 1982Google Scholar
  692. 14.
    Picard, J.-C. and Queyranne, M.: A Network Flow Solution to Some Nonlinear 0–1 Programming Problems With Applications to Graph Theory, Networks, Vol. 12, 1982Google Scholar
  693. 15.
    Gomory, R. E. and Johnson, E. L.: Some Continuous Functions Related to Corner Polyhedra, Math. Progr., Vol. 3, 1972Google Scholar
  694. 16.
    Ford, L. R. and Fulkerson, D. R.: Flows in Networks, Princeton Univ. Press, Princeton, N. J., 1982Google Scholar
  695. 17.
    Elmaghraby, S. E.: Some Network Models in Management Science, Springer-Verlag, Berlin, 1970zbMATHGoogle Scholar
  696. 18.
    Lawler, E. L.: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976Google Scholar
  697. 19.
    Wong, R. T.: Dual Ascent Approach for Steiner Tree Problems on a Directed Graph, Math. Progr., Vol. 28, No. 3, 1984Google Scholar
  698. 20.
    Littger, K.: Minimierung argument-beschränkt monotoner diskreter Funktionen mittels Datenvariation, Diss., TH München, 1971Google Scholar
  699. 21.
    Jaeschke, G.: Kombin. dyn. Optimierung, Diss., TH Stuttgart, 1968Google Scholar
  700. 22.
    Baker, E. K.: Exact Algorithm for the Time-Constrained Travelling Salesman Problem, Oper. Res., Vol. 31, No. 5, 1983Google Scholar
  701. 23.
    Golomb, S. W. and Baumert, L. D.: Backtrack Programming, Journal of the Association for Computing Machinery, Vol. 12, No. 4, 1965Google Scholar
  702. 24.
    Holland, O. A.: Schnittebeneverfahren für Travelling-Salesman-und verwandte Probleme, Diss., Univ. Born, 1987Google Scholar
  703. 25.
    Hoffman, K. and Padberg, M.: LP-Based Combinatorial Problem Solving, Annals of Operations Research, Vol. 5, 1986, 145–194MathSciNetGoogle Scholar
  704. 26.
    Hu, T. C.: Combinatorial Algorithms, Addison-Wesley Publishing Company, Reading, Mass., 1982zbMATHGoogle Scholar
  705. 27.
    Kohler, W. H.: Exact and Approximate Algorithms for Permutation Problems, Ph.D. Thesis, Dept. of Computer Science, Princeton Univ., 1972Google Scholar
  706. 28.
    Kohler, W. H. and Steiglitz, K.: Characterization and Theoretical Comparison of Branch-andBound Algorithms for Permutation Probl., J. ACM, Vol. 21, 1974, 140–156MathSciNetzbMATHGoogle Scholar
  707. 29.
    Kohler, W. H. and Steiglitz, K.: Exact, Approximate and Guaranteed Accuracy Algorithms for the Flow-Shop Problem n/2/F/F, J. ACM, Vol. 22, 1975, 106–114zbMATHGoogle Scholar
  708. 30.
    Hertz, A. and De Werre, D.: Using Tabu Search Techniques for Graph Coloring, Computing, Vol. 39, No. 4, 1987, 345–351MathSciNetzbMATHGoogle Scholar
  709. 31.
    Leighton, F. T.: A Graph Coloring Algorithm for Large Scheduling Problems, J. of Res. of the NBS, Vol. 84, 1979, 489–503MathSciNetzbMATHGoogle Scholar
  710. 32.
    Scarf, H. E.: Integral Polghedra in the Three Space, Mathematics of Operations Research, Vol. 10, No. 3, 1985, 403–438MathSciNetzbMATHGoogle Scholar
  711. 33.
    Coffman, E. G. Jr., Lueker, G. S., and Rinnooy Kan, A. H. G.: Asymptotic Methods in the Probabilistic Analysis of Sequencing and Packing Heuristics, Mgmt. Sci., Vol. 34, No. 3, 1988, 266–290zbMATHGoogle Scholar
  712. 34.
    Karmarkar, N., Karp, R. M., Lueker, G. S., and Odlyzko, A. M.: Probabilistic Analysis of Optimum Partitioning, J. Appl. Probability Vol. 23, 1986, 626–645MathSciNetzbMATHGoogle Scholar
  713. 35.
    Padberg, M. W.: Covering, Packing and Knapsack Problems, Ann. Discr. Mathem., Vol. 5, 1979, 139–183MathSciNetGoogle Scholar
  714. 36.
    Korman, S. M.: Graph Colouring and Related Problems in Operations Research, Ph.D. Thesis, Imperial College, London, 1975Google Scholar
  715. 37.
    Weinberger, D. B.: Network Flows, Minimum Coverings, and the Four-Color Conjectures, Oper. Res., Vol. 24, No. 2, 272–290Google Scholar
  716. 38.
    Balas, E. and Padberg, M. W.: On the Set-Covering Problem, Operations Research, Vol. 20, No. 6, 1972, 1152–1161MathSciNetzbMATHGoogle Scholar
  717. 39.
    Balas, E. and Padberg, M. W.: Set Partitioning—A Survey, SIAM Review, Vol. 18, 1976, 710–760MathSciNetzbMATHGoogle Scholar
  718. 40.
    Kolesar, P. J.: A Branch-and-Bound Algorithm for the Knapsack Problem, Mgmt. Sci., Vol. 13, 1967, 723–735Google Scholar
  719. 41.
    Martello, S. and Toth, P.: An Upper Bound for the Zero-One Knapsack Problem and a Branch and Bound Algorithm, Eur. J. Oper. Res., Vol. 1, 1977, 169–175MathSciNetzbMATHGoogle Scholar
  720. 42.
    Salkin, H. M. and De Kluyver, C. A.: The Knapsack Problem—A Survey, Nay. Res. Logist. Quart., Vol. 22, 1975, 127–144zbMATHGoogle Scholar
  721. 43.
    Suhl, U.: An Algorithm and Efficient Data Structures for the Binary Knapsack Problem, Freie Universität Berlin, Res. Report, 1977Google Scholar
  722. 44.
    Weingartner, H. M. and Ness, D. N.: Methods for the Solution of the Multi-Dimensional 0–1 Knapsack Problem, Oper. Res., Vol. 15, No. 1, 1967, 83–103Google Scholar
  723. 45.
    Nauss, R. M.: An Efficient Algorithm for the 0–1 Knapsack Problem, Mgmt. Sci., Vol. 23, 1976, 27–31zbMATHGoogle Scholar
  724. 46.
    Christofides, N.: The Tray. Salesman Problem, in VIII.1. 6–05, 1979Google Scholar
  725. 47.
    Held, M. and Karp, R.: The Travelling Salesman Problem and Minimum Spanning Trees I, Oper. Res., Vol. 18, 1970, 1138–1162MathSciNetzbMATHGoogle Scholar
  726. 48.
    Held, M. and Karp, R.: The Travelling Salesman Problem and Minimum Spanning Trees II, Math. Progr., Vol. 1, 1971, 6–25MathSciNetzbMATHGoogle Scholar
  727. 49.
    Golden, B. L.: Large-Scale Vehicle Routing and Related Combinatorial Problems, Ph.D. Diss., Oper. Res. Center, M. I. T., Cambridge, Mass., 1976Google Scholar
  728. 50.
    Djerdjour, M., Mathur, K., and Salkin, H. M.: Surrogate Relaxation Based Algorithm for a General Quadratic Multi-Dimensional Knapsack Problem, Oper. Res. Letters, Vol. 7, No. 5, 1988, 253–258MathSciNetzbMATHGoogle Scholar
  729. 51.
    Fleischmann, B.: Computational Experience with the Additive Algorithm of Balas, Oper. Res., Vol. 15, 1967, 153–154Google Scholar
  730. 52.
    Lawler, E. L. and Bell, M. D.: A Method for Solving Discrete Optimization Problems, Oper. Res., Vol. 14, No. 6, 1966, 1098–1112Google Scholar
  731. 53.
    Balas, E.: Discrete Programming by the Filter Method, Operations Research, Vol. 15, 1967, 915–957MathSciNetzbMATHGoogle Scholar
  732. 54.
    Teruo, J.: Numerische Verfahren der Diskreten Optimierug, Teubner, Leipzig, 1981Google Scholar
  733. 55.
    Sahni, S.: General Techniques for Combinatorial Approximation, Operation Research, Vol. 25, No. 6, 1977, 920–936MathSciNetGoogle Scholar
  734. 56.
    Arthanari, T. S.: On Some Problems of Sequencing and Grouping, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1974Google Scholar
  735. 57.
    Balas, E.: Duality in Discrete Programming, II. The Quadratic Case, Mgmt. Sci., Vol. 16, No. 1, 1969, 14–32MathSciNetzbMATHGoogle Scholar
  736. 58.
    Miller, C. E., Tucker, A. W., and Zemlin, R. A.: Integer Programming Formulation of Traveling Salesman Problems, J. ACM, Vol. 7, 1960, 326–329MathSciNetzbMATHGoogle Scholar
  737. 59.
    Bellman, R.: Dynamic Programming Treatment of the Traveling Salesman Problem, J. ACM, Vol. 9, No. 1, 1962, 61–63zbMATHGoogle Scholar
  738. 60.
    Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karel, C.: An Algorithm for the Traveling Salesman Problem, Oper. Res., Vol. 11, No. 6, 1963, 972–989zbMATHGoogle Scholar
  739. 61.
    Bellman, R. and Hall, M., Jr. (Eds.): Combinatorial Analysis, Proc. of the Tenth Symposium in Applied Mathematics of the AMS, 1960Google Scholar
  740. 62.
    Markowitz, H. M. and Manne, A. S.: On the Solution of Discrete Progr. Problems, Econometrica, Vol. 25, 1957, 84–110MathSciNetzbMATHGoogle Scholar
  741. 63.
    Svestka, J. A. and Huckfeldt, V. E.: Computational Experience with m-salesman Traveling Salesman Algorithm, Mgmt. Sci., Vol. 19, 1973, 790–799zbMATHGoogle Scholar
  742. 64.
    Gavish, B.: A Note on `The Formulation of the m-salesman Traveling Salesman Problem’, Mgmt. Sci., Vol. 22, 1976, 704–705zbMATHGoogle Scholar
  743. 65.
    Svestka, J. A.: Response to `A Note on the Formulation of the m-salesman Traveling Salesman Problem’, Vol. 22, 1976, 706zbMATHGoogle Scholar
  744. 66.
    Arthur, J. L. and Frendewey, J. O.: Generating Traveling Salesman Problems with Known Optimal Tours, J. Oper. Res., Soc., Vol. 39, No. 2, 1988, 785–795Google Scholar
  745. 67.
    Eiselt, H. A. and Laporte, G.: Combinatorial Optimization Problems with Soft and Hard Requirements, J. Oper. Res. Soc., Vol. 38, No. 9, 1987, 785–795zbMATHGoogle Scholar
  746. 68.
    Gilmore, P. C. and Gomory, R. E.: The Theory and Computation of Knapsack Functions, Oper. Res., Vol. 14, No. 6, 1966Google Scholar
  747. 69.
    Johnson, D. S.: Fast Algorithms for Bin Packing, Journal Comp. Systems Sci., Vol. 8, 1974, 272zbMATHGoogle Scholar
  748. 70.
    Granot, F. and Hammer, P. L.: On the Use of Boolean Functions in 0–1 Programming, Methods of Oper. Res., Vol. 12, 1972, 154–184Google Scholar
  749. 71.
    Granot, F. and Hammer, P. L.: On the Role of Generalized Covering Problems, Cahiers du Center d’Etudes de Recherche Operationelle, Vol. 16, 1974, 277–289MathSciNetzbMATHGoogle Scholar
  750. 72.
    Maffioli, F.: The Complexity of Combinatorial Optimization Algorithms and the Challenge of Heuristics, in VIII.1. 6–05, 1979Google Scholar
  751. 73.
    Edmonds, J.: Paths, Trees and Flowers, Canad. J. Math., Vol. 17, 1965, 449–467MathSciNetzbMATHGoogle Scholar
  752. 74.
    Edmonds, J. and Karp, R. M.: Theoretical Improvements in Algorithmic Efficiency for Network Flow Probl., J. ACM, Vol. 19, 1972, 248–264zbMATHGoogle Scholar
  753. 75.
    Preparata, F. P. and Hong, S. J.: Convex Hulls of Finite Sets of Points in Two a. Three Dimensions, Comm. of the ACM, Vol. 20, 1977, 87–93MathSciNetzbMATHGoogle Scholar
  754. 76.
    Kruskal, J. B.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, Proc. AMS, Vol. 7, 1956, 48–50MathSciNetzbMATHGoogle Scholar
  755. 77.
    Guy, R. et al. (Ed.): Combinatorial Structures and Their Application, Programming of the Calgary Intern. Conference, Gordon and Breach, New York, 1970Google Scholar
  756. 78.
    Rinaldi, S. (Ed.): Combinatorial Optimiz., Springer, Berlin, 1973Google Scholar
  757. 79.
    Karp, R. M.: On the Computational Complexity of Combinatorial Problems, Networks, Vol. 5, No. 1, 1975, 45–68zbMATHGoogle Scholar
  758. 80.
    Leue, O.: Methoden zur Lösung dreidimensionaler Zuordnungsprobleme, Forschungsbericht Nr. 9, Lehrstuhl für Betriebswirtschaftslehre I, TH Darmstadt, 1971Google Scholar
  759. 81.
    Junginger, W.: über die Lösung des dreidimensionalen Transportproblems, Uinversität Stuttgart, Diss., August 1970Google Scholar
  760. 82.
    Norback, J. P. and Love, R. F.: Geometric Approaches to Solving the Travelling Salesman Problem, Mgmt. Sci., Vol. 23, No. 11, 1977, 1208–1223zbMATHGoogle Scholar
  761. 83.
    Gerhardt, C.: Gedanken zur Lösung des Knapsackproblems, Ablauf-und Planungsforschung, Vol. 11, No. 2, 1970, 69–83MathSciNetGoogle Scholar
  762. 84.
    Croes, G. A.: A Method for Solving Traveling Salesman Problems, Oper. Res., Vol. 6, 1958, 791–812MathSciNetGoogle Scholar
  763. 85.
    Flood, M. M.: The Tray. Salesman Probl., Oper. Res., Vol. 4, 1956, 61MathSciNetGoogle Scholar
  764. 86.
    Balinski, M. L.: An Algorithm for Finding all Vertices of Convex Polyhedral Sets, SIAM J., Vol. 9, No. 1, 1961, 72–88MathSciNetzbMATHGoogle Scholar
  765. 87.
    Fiorot, J. Ch.: Generation of all Integer Points for Given Sets Linear Inequalities, Univ. of Lille, France, Laboratorie de Calcul de la Faculte des Science, October 1970Google Scholar
  766. 88.
    Veinott, A. F. Jr. and Dantzig, G. B.: Integral Extreme Points, SIAM Review, Vol. 10, No. 3, 1968, 371–372MathSciNetzbMATHGoogle Scholar
  767. 89.
    Hoffman, A. J. and Kruskal, J. B.: Integral Boundary Points of Convex Polyhedra, in VIII.1. 2–30, 1956, 233–246Google Scholar
  768. 90.
    Padberg, M. and Rinaldi, G.: Optimization of 532-City Symmetric Travelling Salesman Problem by Branch and Cut, Oper. Res. Letters, Vol. 6, 1987, 1–7MathSciNetzbMATHGoogle Scholar
  769. 91.
    Lin, S. and Kernighan, B.: An Effective Heuristic Algorithm for the Traveling Salesman Problem, Oper. Res., Vol. 21, 1973, 498–516MathSciNetzbMATHGoogle Scholar
  770. 92.
    Muehlenbien, H., Gorges-Schleuter, M., and Kraemer, O.: Evolution Alg. in Combin. Optimiz., Parallel Comp., Vol. 7, 1988, 65–85Google Scholar
  771. 93.
    Rossier, Y., Troyon, M. and Liebling, Th. M.: Probabilistic Exchange Algorithms and Euclidean Traveling Salesman Problems, OR Spektrum, Vol. 8, 1986, 151–164MathSciNetzbMATHGoogle Scholar
  772. 94.
    Dueck, G. and Scheuer, T.: Threshold Accepting—A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing, IBM Germany, Heidelberg Sci. Center, Rept. TR 88.10. 011, Oct. 1988Google Scholar
  773. 95.
    Weber, M. and Liebling, Th. M.: Euclidean Matching Problems and the Metropolis Algorithm, Zeitschr. für Oper. Res., Vol. 30, 1986, A85–A110MathSciNetGoogle Scholar
  774. 96.
    Iri, M., Marota, K. and Matsui, S.: Heuristics for Planar Minimum-Weight Perfect Matchings, Networks, Vol. 13, 1983, 67–92MathSciNetzbMATHGoogle Scholar
  775. 97.
    Silverman, R. D.: The Multiple Polynomial Quadratic Sieve, Math. Comp., Vol. 48, No. 177, Jan. 1987Google Scholar
  776. 98.
    Wong, R. T.: Integer Programming Formulations for the Traveling Salesman Problem, Proc. IEEE Int. Conf. of Circuits and Computers, 1980, 149–152Google Scholar
  777. 99.
    Claus, A.: A New Formulation for the Traveling Salesman Problem, SIAM J. Alg. Disc. Meth., Vol. 5, 1984, 21–25MathSciNetzbMATHGoogle Scholar
  778. 100.
    Martello, S.: An Enumerative Algorithm for Finding Hamiltonian Circuits in Directed Graph, ACM Trans. on Math. Softw., Vol. 9, 1983, 131–138zbMATHGoogle Scholar
  779. 101.
    Balas, E. and Christofides, N.: A Restricted Lagrangean Approach to the Tray. Salesman Problem, Math. Progr., Vol. 21, 1981, 19–46MathSciNetzbMATHGoogle Scholar
  780. 102.
    Parker, R. G. and Rardin, R. L.: The Traveling Salesman Problem—An Update of Res., Nay. Res. Logist. Quart., Vol. 30, 1983, 69–96MathSciNetzbMATHGoogle Scholar
  781. 103.
    Finke, G.: Bulk Shipment Formulation for the Traveling Salesman Problem, Methods of Oper. Res., Vol. 5, 1984, 247–256MathSciNetGoogle Scholar
  782. 104.
    Finke, G., Clause, A. and Gunn, E.: A Two-Commodity Network Flow Approach to the Traveling Salesman Problem, Congressus Numerantium, Vol. 41, 1984, 167–178MathSciNetGoogle Scholar
  783. 105.
    Aris, R.: Discrete Dynamic Programming, Blaisdell Publ. Comp., New York, 1963Google Scholar
  784. 106.
    Balas, E.: Discrete Programming by Implicit Enumeration, Springer, Berlin, 1967Google Scholar
  785. 107.
    Balas, E.: Intersection Cuts from Maximal Convex Extensions of the Ball and the Octahedron, Carnegie-Mellon-Univ., Graduate School of Industrial Admin., Pittsburg, Pennsylvania, 1970Google Scholar
  786. 108.
    Balinski, M. L. and Norman, M.: Experiments with Set Covering Problems, Mathematica Working Paper, January 1985Google Scholar
  787. 109.
    Barachet, I. T.: Graphic Solution of the Traveling Salesman Problem, Operations Research, Vol. 5, No. 6, 1957Google Scholar
  788. 110.
    Müller-Merbach, H.: Drei Neue Methoden zur Lösung des Traveling Salesman Problems, Ablauf-und Planunsgforschung, Vol. 7, 1966, 32–46 und 78–91Google Scholar
  789. 111.
    Müller-Merbach, H.: Ermittlung des kuerzesten Rundreiseweges mittels linearer Programmierung, Ablauf-und Planungsforschung, Vol. 2, No. 5, 1961, 70–83Google Scholar
  790. 112.
    Beckenbach, E. F. (Ed.): Applied Combinatorial Mathematics, Wiley, New York, 1964zbMATHGoogle Scholar
  791. 113.
    Bellmore, M. and Nemhauser, G. L.: The Traveling Salesman Problem—a Survey, Operations Research, Vol. 16, 1968, 538–558MathSciNetzbMATHGoogle Scholar
  792. 114.
    Bellmore, M. and Malone, J. C.: Pathology of Traveling Salesman Algorithms, The John Hopkins Univ., Technical ReportGoogle Scholar
  793. 115.
    Bellmore, M. and Ratliff, H. D.: Set Covering and Involutory Bases, The John Hopkins Univ., Technical Report, 1970Google Scholar
  794. 116.
    Benders, J. F., Catchpole, A. R., and Kuiken, C.: Discrete Variables Optimization Problems, The RAND-Symposium on Math. Progr., 1959Google Scholar
  795. 117.
    Ben-Israel, A. and Charnes, A.: On Some Probl. of Dioph. Progr., Cahiers Center Etudes Recherche Oper., Vol. 4, 1962, 215–280MathSciNetzbMATHGoogle Scholar
  796. 118.
    Gelfand, S. I., Gerver, M. L., and Kirillov, A. A.: Sequences and Combinatorial Problems, Gordon and Breach, New York, 1969zbMATHGoogle Scholar
  797. 119.
    Iri, M.: Network Flow, Transportation and Scheduling, Theory and Algorithms, Academic Press, New York, 1969zbMATHGoogle Scholar
  798. 120.
    Kaufmann, A.: Introduction a la combinatorique en vue des applications, Dunod, Paris, 1968zbMATHGoogle Scholar
  799. 121.
    Grötschel, M. und Padberg, M. W.: Lineare Charakterisierungen von Travelling Salesman Problemen, Zeitschr. für Oper. Res., Vol. 21, 1977, 33–64zbMATHGoogle Scholar
  800. 122.
    Grötschel, M.: Beiträge zur polyedrischen Beschreibung kombinatorischer Optimierungsprobleme, Diss., Bonn, 1977Google Scholar
  801. 123.
    Dantzig, G. B., Fulkerson, R., and Johnson, S.: Solution of a Large Scale Tray.-Salesman Problem, Oper. Res., Vol. 2, 1954, 393–410MathSciNetGoogle Scholar
  802. 124.
    Padberg, M. W.: On the Facial Structure of Set Packing Polyhedra, Math. Progr., Vol. 5, 1973, 119–215MathSciNetGoogle Scholar
  803. 125.
    Padberg, M. W. and Rao, R. M.: The Tarv. Salesman Problem and a Class of Polyhedra of Diameter Two, Math. Progr., Vol. 7, 1974, 32–45MathSciNetzbMATHGoogle Scholar
  804. 126.
    Wolsey, L. A.: Faces for Linear Inequalities in 0–1 Variables, Math. Progr., Vol. 8, 1975, 165–178MathSciNetzbMATHGoogle Scholar
  805. 127.
    Padberg, M. W.: A Note on Zero-One Programming, Operations Research, Vol. 23, 1975, 833–837MathSciNetzbMATHGoogle Scholar
  806. 128.
    Hong, S.: A Linear Programming Approach for the Tray.-Salesman Problem, Ph.D. Thesis, The John-Hopkins Univ., Baltimore, 1971Google Scholar
  807. 129.
    Balas, E.: Facets of the Knapsack Polytope, Mathematical Programming, Vol. 8, 1975, 146–164MathSciNetzbMATHGoogle Scholar
  808. 130.
    Beale, E. M. L. and Tomlin, J. A.: An Integer Programming Approach to a Class of Combin. Problems, Math. Progr., Vol. 3, 1972, 339–344MathSciNetzbMATHGoogle Scholar
  809. 131.
    Dueck, W.: Diskrete Optimierung, Vieweg, Braunschweig, 1977Google Scholar
  810. 132.
    Lin, S.: Computer Solutions of the Traveling Salesman Problem, Bell System Techn. Journal, Vol. 44, 1965, 2245–2269zbMATHGoogle Scholar
  811. 133.
    Kuhn, H. W.: The Hungarian Method for the Assignment Problem, Naval Research Logistics Quarterly, Vol. 2, 1955, 83–97MathSciNetGoogle Scholar
  812. 134.
    Korbut, A. A. and Finkelstein, J. J.: Diskrete Optimierung, Akademie Verlag, Berlin, 1971zbMATHGoogle Scholar
  813. 135.
    Burckhardt, W.: Zur Optimierung von räumlichen Zuordnungen, Ablauf und Planungsfoschung, Vol. 10, 1969, 233–248Google Scholar
  814. 136.
    Schoch, M.: Ein Eweiterungsprinzip als Konzeption zur Lösung kombinatorische Optimierungsprobleme, Math. Operationsforschung und Statistik, Vol. 1, 1970, 265–280MathSciNetGoogle Scholar
  815. 137.
    Bradley, G. H.: Transformation of Integer Programs to Knapsack Problems, Discrete Mathematics, Vol. 1, 1971, 29–45MathSciNetzbMATHGoogle Scholar
  816. 138.
    Burkard, R. E. and Stratmann, K. H.: Numerical Investigations on Quadratic Assignment Problems, Nay. Res. Logist. Quart., Vol. 25, 1979, 129–144Google Scholar
  817. 139.
    Wilhelm, M. R. and Ward, T. L.: Solving Quadratic Assignment Problems by Simulated Annealing, IIE Trans, Vol. 19, No. 1, 1979, 107–119Google Scholar
  818. 140.
    Lawler, E. L.: The Quadratic Assignment Problem, Mgmt. Sci., Vol. 9, 1963Google Scholar
  819. 141.
    Lawler, E. L.: The Quadratic Assignment Problem—A Brief Review, Paper Presented at an Advanced Study Institute on Combinatorial Programming, Versailles, France, September 1974Google Scholar
  820. 142.
    Padberg, M. W.: Perfect Zero-One Matrices, Math. Progr., Vol. 6, 1974, 180–196MathSciNetzbMATHGoogle Scholar
  821. 143.
    König, D.: Theorie der endlichen und unendlichen Graphen, Akad. Verl. Ges., Leipzig, 1936 und Chelsea, New York, 1964Google Scholar
  822. 144.
    Guignard, M. and Spielberg, K.: Mixed-Integer Algorithm for the (0,1)-Knapsack Problem, IBM Journal of Research and Development, Vol. 16, No. 4, 1972, 424–430MathSciNetzbMATHGoogle Scholar
  823. 145.
    Kuhn, H. W.: Variants of the Hungarian Method for Assignment Problems, Nay. Res. Logist. Quart., Vol. 3, 1956, 253–258Google Scholar
  824. 146.
    Egervary, J.: On Combinatorial Properties of Matrices (in Hungarian), Matematikai es Fizikai Lapok 38, 1931, 16–28zbMATHGoogle Scholar
  825. 147.
    Egervary, J.: Combinatorial Methods for Solving Transportation Problems, Mag. Tud. Akad. Mat. Kut. Intez. Koezlemenley, Vol. 4, 1959, 15–28zbMATHGoogle Scholar
  826. 148.
    Padberg, M. W.: Total Unimodularity and the Euler-Subgraph Problem, Oper. Res. Letters, Vol. 7, No. 4, 1988, 173–179MathSciNetzbMATHGoogle Scholar
  827. 149.
    Fischetti, M. and Toth, P.: New Dominance Procedure for Combinatorial Optimization Problems, Oper. Res. Letters, Vol. 7, No. 4, 1988, 181–187MathSciNetzbMATHGoogle Scholar
  828. 150.
    Jonker, R. and Volgenant, T.: Improved Transformation of the Symmetric Multiple Traveling Salesman Problem, Oper. Res., Vol. 36, No. 1, 1988, 163–167MathSciNetzbMATHGoogle Scholar
  829. 151.
    Gal, T. und Kruse, H.-J.: Ein Verfahren zur Lösung des Nachbarschaftsproblems, in VIII.1. 1–57, 1985, 447–454MathSciNetGoogle Scholar
  830. 152.
    Kruse, H.-J.: Entartungsgraphen und ihre Anwendung zur Lösung des Nachbarschatsproblems, Diss., Fachbereich Wirtschaftswissenschaft, Fernuniversität Hagen, 1984Google Scholar
  831. 153.
    Kruse, H.-J.: Kritische Betrachtungen an einem Verfahren zur Bestimmung aller Nachbarn einer entarteten Ecke einer konvexen polyedrischen Menge, Fachbereiche Wirtschaftswissenschaft, Fernuniversität Hagen, 1980Google Scholar
  832. 154.
    Gal, T.: On the Structure of the Set Bases of a Degenerate Point, Journal Opt. Theory and Appl., Vol. 45, No. 4, 1985Google Scholar
  833. 155.
    Gal. T.: Determination of All Neighbors of a Degenerate Extreme Point in Polytopes, Disc. Paper No. 17b, Fachbereich Wirtschaftswissenschaft, Fernuniversität Hagen, 1978Google Scholar
  834. 156.
    Fleischmann, B.: A New Class of Cutting Planes for the Symmetric Tray. Salesm. Probl., Math. Progr., Vol. 40, No. 3, 1988, 225–246MathSciNetzbMATHGoogle Scholar
  835. 157.
    Burkard, R. E. and Derigs, U.: Assignment and Matching Problems—Solution Methods with FORTRAN-Programs, Springer, Berlin, 1980zbMATHGoogle Scholar
  836. 158.
    Efron, B.: The Convex Hull of a Random Set of Points, Biometrica, Vol. 52, No. 3, 1965, 331–345MathSciNetzbMATHGoogle Scholar
  837. 159.
    Carnal, H.: Die konvex Huelle von n rotationssymmetrisch verteilten Punkten, Zeithschr. für Wahrscheinlichkeitsrechnung und verwandte Gebiete, Vol. 15, 1970, 168–176MathSciNetzbMATHGoogle Scholar
  838. 160.
    Kelly, D. G. and Tolle, J. W.: Expected Number of Vertices of a Random Convex Polytope, Univ. of North Carolina, Chapel Hill, 1979Google Scholar
  839. 161.
    Raynaud, H.: Sur l’enveloppe convexe des nuages de points aleatoires dans Rn, Journal of Appl. Probab., Vol. 7, 1970, 35–48MathSciNetzbMATHGoogle Scholar
  840. 162.
    Renyi, A. und Sulanke, R.: Über die konexe Huelle von n zufällig gewählten Punkten I, Zeitschr. für Wahrscheinlichkeitsrechnung und verw. Gebiete, Vol. 2, 1963, 75–84MathSciNetzbMATHGoogle Scholar
  841. 163.
    Renyi, A. und Sulanke, R.: Über die konexe Huelle von n zufällig gewählten Punkten I, Zeitschr. für Wahrscheinlichkeitsrechnung und verw. Gebiete, Vol. 3, 1964, 138–147MathSciNetzbMATHGoogle Scholar
  842. 164.
    May, J. H. and Smith, R. L.: Random Polytopes-Their Definition, Generation and Aggregate Properties, Math. Progr., Vol. 24, 1982, 39–54MathSciNetzbMATHGoogle Scholar
  843. 165.
    Korte, D. und Oberhofer, W.: Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblemes, Unternehmensforschung, Vol. 12, Heft 4, 1968, 217–231Google Scholar
  844. 166.
    Greenberg, H. and Hegerick, R. L.: A Branch Search Algorithm for the Knapsack Problem, Mgmt. Sci., Vol. 16, No. 5, 1970, 327–332zbMATHGoogle Scholar
  845. 167.
    Ross, G. T. and Soland, R. M.: A Branch-and-Bound Algorithm for the Generalized Assignment Probl., Math. Progr., Vol. 8, 1975, 91–103MathSciNetzbMATHGoogle Scholar
  846. 168.
    Padberg, M. and Sung, T.-Y.: Polynomial-Time Solution to Papadimitrious and Steiglitz’s `Traps’, Oper. Res. Letters, Vol. 7, No. 3, 1988, 117–125MathSciNetzbMATHGoogle Scholar
  847. 169.
    Roy, B. (Ed.): Combinatorial Programming-Methods and Applications, Proc. of the NATO Adv. Study Institute, Versailles, Sept. 2–13, 1974, D. Reidel, Boston, 1975zbMATHGoogle Scholar
  848. 170.
    Guignard, M. and Kim, S.: Lagrangean Decomposition-A Model Yielding Stronger Bounds, Math. Progr., Vol. 39, No. 2, 1987, 215–228MathSciNetzbMATHGoogle Scholar
  849. 171.
    Roucairol, C.: Parallel Branch and Bound Algorithm for the Quadratic Assignment Problem, Discrete Appl. Math., Vol. 18, No. 2, 1987, 211–228MathSciNetzbMATHGoogle Scholar
  850. 172.
    Christofides, N.: Bounds for the Travelling-Salesman Problem, Oper. Res., Vol. 20, No. 5, 1972, 1044–1056MathSciNetzbMATHGoogle Scholar
  851. 173.
    Christofides, N.: An Algorithm for the Chromatic Number of a Graph, The Computer J., Vol. 14, No. 1, 1971, 38–39MathSciNetzbMATHGoogle Scholar
  852. 174.
    Papadimitriou, C. H. and Steiglitz, K.: Combinatorial Optimization-Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, N. J., 1982zbMATHGoogle Scholar
  853. 175.
    Martello, S. and Toth, P.: Algorithms for Knopsack Problems, Annals of Discrete Mathematics, Vol. 31, 1987, 213–257MathSciNetGoogle Scholar
  854. 176.
    Camion, P.: Characterization of Totally Unimodular Matrices, Proc. Am. Math. Soc., Vol. 16, 1965, 1068–1073MathSciNetzbMATHGoogle Scholar
  855. 177.
    Ghouila-Houri, A.: Characterisation des matrices totallement unimodularies, C. R. Acad. Sc. Paris, Vol. 254, 1962, 1192–1194MathSciNetzbMATHGoogle Scholar
  856. 178.
    Gondran, M.: Matrices totallement unimodulaires, E. D. F. Bulletin, Series C, Vol. 1, 1973, 5574Google Scholar
  857. 179.
    Balas, E.: On the Convex Hull of the Union of Certian Polyhedra, Oper. Res. Letters, Vol. 7, No. 6, 1988, 279–283MathSciNetzbMATHGoogle Scholar
  858. 180.
    Golden, B., Bodin, L., Doyle, T., and Stewart, W. Jr.: Approximate Travelling Salesman Problem in the Plane, Oper. Res., Vol. 28, No. 3, Part 2, 1980, 694–711MathSciNetGoogle Scholar
  859. 181.
    Horowitz, E. and Sahni, S.: Computing Partitions with Applications to the Knapsack Problem, J. ACM, Vol. 21, 1974, 277–292MathSciNetzbMATHGoogle Scholar
  860. 182.
    Fleishman, S. B.: Efficient Application of Noserial Dynamic Programming in Combinatorial Optimization, Autom. Remote Control, Vol. 49, No. 2, part 1, July 10, 1988, 184–193MathSciNetGoogle Scholar
  861. 183.
    Cornuejols, G. and Sassano, A.: On the 0, 1 Facets of the Set Covering Polytope, Math. Progr. Ser. A, Vol. 43, No. 1, 1989, 45–55MathSciNetzbMATHGoogle Scholar
  862. 184.
    Balas, E. and Ng, S. M.: On the Set Covering Polytope I-All the Facets With Coefficients in (0,1,2), Math. Progr., Ser. A, Vol. 43, No. 1, Jan. 1989, 57–69MathSciNetzbMATHGoogle Scholar
  863. 185.
    Edmonds, J.: Optimum Branchings, J. Res. Natl. bur. Stand. Math. Mathem. Phys., No. 71B, 1967, 233–240MathSciNetzbMATHGoogle Scholar
  864. 186.
    Fisher, M. L., Jaikumar, R., and Van Wassenhove, L.: A Multiplier Adjustment Method for the Generalized Assignment Problem, Mgmt. Sic., Vol. 9, 1986, 1095–1103Google Scholar
  865. 187.
    Shapiro, J. F.: A Survey of Lagrangean Techniques for Discrete Optimization, Ann. Discrete Math., Vol. 5, 113–138, 1979MathSciNetzbMATHGoogle Scholar
  866. 188.
    Held, M., Wolfe, P., and Crowder, H. D.: Validation of Subgradient Optimization, Math. Progr., Vol. 6, 1974, 62–88MathSciNetzbMATHGoogle Scholar
  867. 189.
    Sandi, C.: Subgradient Optimization, in VIII.1. 6–05, 1979, 73–91Google Scholar
  868. 190.
    Martello, S. and Toth, P.: Linear Assignment Problems, Ann. Discrete Mathematics, Vol. 31, 1987, 259–282MathSciNetGoogle Scholar
  869. 191.
    Young, H. P.: On Permutations and Permutation Polytopes, Mathematical Programming Studies, No. 8, 1978, 128–140Google Scholar
  870. 192.
    Weyl, H.: Elementare Theorie der konvexen Polyeder, Comm. Math. Helv., Vol. 7, 1935, 290–306MathSciNetzbMATHGoogle Scholar
  871. 193.
    Hammer, P. L., Johnson, E. L., and Peled, U.N.: Faces of Regular 0–1 Polytopes, Math. Progr., Vol. 8, 1975, 179–206MathSciNetzbMATHGoogle Scholar
  872. 194.
    Gavish, B. and Srikanth, K.: An Optimal Solution for Large-Scale Multiple Travelling Salesmen Problems, Oper. Res., Vol. 34, 1987, 698–717MathSciNetGoogle Scholar
  873. 195.
    Burkard, R. E.: Traveling Salesman and Assignment Problems—A Survey, Annals of Discrete Math., No. 4, 1979, 193–215MathSciNetzbMATHGoogle Scholar
  874. 196.
    Jeromin, B. and Körner, F.; Triangle Inequality and Symmetry in Connection with the Assignment and the Traveling Salesman Probl., Eur. J. Oper. Res., Vol. 38, No. 1, 1989, 70–75zbMATHGoogle Scholar
  875. 197.
    Volgenant, A.: Contributions to the Solution of the Traveling Salesman Problem and Related Problems, Diss., Amsterdam, 1987Google Scholar
  876. 198.
    Korte, B.: Approximative Algorithms for Discrete Optimization Problems, Annals of Discrete Math., No. 4, 1979, 85–120MathSciNetzbMATHGoogle Scholar
  877. 199.
    Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B. (Eds.): The Travelling Salesman Problem—A Guided Tour of Combinatorial Optimization, Wiley, Chichester, 1985Google Scholar
  878. 200.
    Jeroslow, R. G.: A Simplification for Some Disjunctive Formulations, Georgia Institute of Technology, December 1985Google Scholar
  879. 201.
    Papadimitriou, C. H. and Steiglitz, K.: Some Examples of Difficult Traveling Salesman Problems, Oper. Res., Vol. 26, 1978, 434–441MathSciNetzbMATHGoogle Scholar
  880. 202.
    Escudero, L. F.: In exact Algorithm for the Sequential Ordering Problem, Eur. J. Oper. Res., Vol. 37, No. 2, 1988, 236–248MathSciNetzbMATHGoogle Scholar
  881. 203.
    Thompson, G. L. and Karp, R. L.: A Heuristic Approach to Solving Traveling Salesman Problems, Mgmt. Sci., Vol. 10, 1964, 225–247Google Scholar
  882. 204.
    Crowder, H. and Padberg, M. W.: Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality, Mgmt. Sci., Vol. 26, 1980, 495–509MathSciNetzbMATHGoogle Scholar
  883. 205.
    Livshits, E. M.; A Study of Some Algorithms of Discrete Optimization, Ph.D. Thesis, Kharkov, 1969Google Scholar
  884. 206.
    Brezovec, C., Cornuejols, G., and Glover, F.: Matriod Algorithm and Problems of Graphs, Math. Progr., Ser. B., Vol. 42, No. 3, 1988, 471–487MathSciNetzbMATHGoogle Scholar
  885. 207.
    Papadimitriou, C.H.: The Complexity of Combinatorial Optimization Problems, Ph.D. Thesis, Princeton Univ., 1976Google Scholar
  886. 208.
    Padberg, M. W.: A Note on the Total Unimodularity of Matrices, Discrete Mathematics, Vol. 14, No. 3, 1976, 273–278MathSciNetzbMATHGoogle Scholar
  887. 209.
    Saaty, T. L.: The Number of Vertices of a Polyhedron, American Mathematics Monthly, Vol. 65, 1955, 327–331MathSciNetGoogle Scholar
  888. 210.
    Karp, R. M. and Papadimitriou, C. H.; On Linear Characterizations of Combinatorial Optimization Problems, SIAM J. on Computing, Vol. 11, 1982, 620–632MathSciNetzbMATHGoogle Scholar
  889. 211.
    Grötschel, M. and Wakabayashi, Y.: Cutting Plane Technique for a Clustering Problem, Math. Progr., Ser. B., Vol. 45, No. 1, 1989, 59–96zbMATHGoogle Scholar
  890. 212.
    Balas, E. and Ng, S. M.: On the Set Covering Polytope II—Lifting the Facets With Coefficients in (0,1,2), Math. Progr., Ser. B, Vol. 45, No. 1, 1989, 1–20MathSciNetzbMATHGoogle Scholar
  891. 213.
    Edmonds, J.: Maximum Matching and a Polyhedron with 0,1 Vertices, J, Res. NBS, Vol. 69B, 1965, 125–130MathSciNetzbMATHGoogle Scholar
  892. 214.
    Ivanov, N. N.: Integral Points of Convex Polyhedral Sets, Doctoral Diss., Minsk, 1976Google Scholar
  893. 215.
    Meyer, R. R. and wage, M. L.: On the Polyhedrality of the Convex Hull of the Feasible Set on an Integer Program, SIAM J. Control and Optim., Vol. 16, No. 4, 1978, 682–687MathSciNetzbMATHGoogle Scholar
  894. 216.
    Rustin, B. (Ed.): Combinatorial Algorithms, Academic Press, New York, 1973zbMATHGoogle Scholar
  895. 217.
    Schrijver, A.: On Cutting Planes, Annals Discrete Math., Vol. 9, 1980, 291–296MathSciNetzbMATHGoogle Scholar
  896. 218.
    Kern, W.: Verfahern der kombinatorischen Optimierung und ihr Gültigkeitsbereich, Techn. Univers. Twente, Enschede (Netherlands ), 1989Google Scholar
  897. 219.
    Culioli, J.-C., Glover, C. W., Jones, J. P., and Roe, C.: Implementation of Some Heuristics and an Optimal Algorithm for Large Scale Assignment Problems, Oak Ridge National Lab., Tennessee, 1989Google Scholar
  898. 220.
    Barahona, F. and Mahjoub, A. R.: On the Cut Polytope, Mathematical Programming, Vol. 36, No. 1, 1986, 157–173MathSciNetzbMATHGoogle Scholar
  899. 221.
    Grötschel, M., Jünger, M., and Reinelt, G.: A Cutting Plane Algor. for the Lin. Ordering Problem, Oper. Res., Vol. 32, 1984, 1195–1220MathSciNetzbMATHGoogle Scholar
  900. 222.
    Edmonds, J.: Submodular Functions, Matroids and Certain Polyhedra, in VIII.1. 6–77, 1970, 69–87MathSciNetGoogle Scholar
  901. 223.
    Grötschel, M. and Holland, O. A.: Solving Matching Problems with Linear Programming, Math. Progr., Vol. 33, 1985, 243–259zbMATHGoogle Scholar
  902. 224.
    Wakabayashi, Y.: Aggregation of Binary Relations—Algorithmic and Polyhedral Investigations, Ph.D. Thesis, Univ. Augsburg, 1986Google Scholar
  903. 225.
    Balas, E.: Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems, SIAM J. on Algebraic and Discrete Methods, Vol. 6, 1985, 466–486MathSciNetzbMATHGoogle Scholar
  904. 226.
    Hansen, P. (Ed.): Studies on Graphs and Discrete Programming, North-Holland, Amsterdam, 1981zbMATHGoogle Scholar
  905. 227.
    Giles, F. R. and Pulleyblank, W. R.: Total Dual Integrality and Integer Polyhedra, Linear Algebra and its Applications, Vol. 25, 1979, 191–196MathSciNetzbMATHGoogle Scholar
  906. 228.
    Frank, A. and Tardos, E.: Generalized Polymatroids and Submodular Flows, Math. Progr., Ser. B., Vol. 42, No. 3, 1988, 489–563MathSciNetzbMATHGoogle Scholar
  907. 229.
    Pulleyblank, W. R.: Polyhedral Combinatorics, in VIII.1. 1–16, 1983, 312–345MathSciNetGoogle Scholar
  908. 230.
    Pulleyblank, W. R. (Ed.): Progress in Combinatorial Optimization, Academic Press, Toronto, 1984zbMATHGoogle Scholar
  909. 231.
    Edmonds, J.: Matroids and the Greedy Algorithm, Math. Progr., Vol. 1, 1971, 127–136MathSciNetzbMATHGoogle Scholar
  910. 232.
    Edmonds, J.: Matroid Intersection, Annals of Discrete Mathematics, Vol. 4, 1979, 39–49MathSciNetzbMATHGoogle Scholar
  911. 233.
    Yemelichev, V. A., Kovalev, M. M., and Kravtscv, M. K.: Polytopes, Graphs a. Optimiz., Cambridge Univ. Press, Cambridge, U.K., 1984Google Scholar
  912. 234.
    Cunningham, W. H.: An Unbounded Matroid Intersection Polyhedron, Linear Algebra and its Applications, Vol. 16, 1977, 209–215MathSciNetzbMATHGoogle Scholar
  913. 235.
    Recski, A. and Lovasz, L. (Ed.): Matroid Theory, North-Holland, Amsterdam, 1985zbMATHGoogle Scholar
  914. 236.
    Lovasz, L.: A Generalization of König’s Theorem, Acta Mathematica Academiae Scientiarum Hungaricae, Vol. 21, 1970, 443–446MathSciNetzbMATHGoogle Scholar
  915. 237.
    Giles, R.: Submodular Functions, Graphs and Integer Polyhedra, Ph.D. Thesis, Dept. of Combinatorics and Optimization, Univ. of Waterloo, Canada, 1975Google Scholar
  916. 238.
    Tutte, W. T. (Ed.): Recent Progress in Combinatorics, Proceedings of the Third Waterloo Conference on Combinatorics, May 1968, Academic Press, New York, 1969zbMATHGoogle Scholar
  917. 239.
    Grötschel, M.: Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme, Hain, Meisenheim, 1977Google Scholar
  918. 240.
    Rado, R.: A Theorem on Independence Functions, Quarterly Journal of Mathematics, Oxford, VOL. 13, 1942, 83–89MathSciNetGoogle Scholar
  919. 241.
    Rado, R.: Note on Independence Functions, Proceedings of the London Mathematical Society, Third Series, Vol. 7, 1957, 300–320MathSciNetzbMATHGoogle Scholar
  920. 242.
    Edmonds, J. and Giles, R.: A Min-Max Relation for Submodular Functions on Graphs, Annals of Discrete Math., Vol. 1, 1977, 185–204MathSciNetGoogle Scholar
  921. 243.
    Cunningham, W. H. and Frank, A.: A Primal-Dual Algorithm for Submodular Flows, Math. of Oper. Res., Vol. 10, 1985, 251–262MathSciNetzbMATHGoogle Scholar
  922. 244.
    Dunstan, F. D. J.: Matroids and Submodular Functions, Quarterly J. of Mathematics, Oxford, Vol. 27, 1976, 339–347MathSciNetzbMATHGoogle Scholar
  923. 245.
    Sahni, S.: Approximate Algorithms for the 0/1-Knapsack Problem, J. of the ACM, Vol. 22, 1975, 115–124MathSciNetzbMATHGoogle Scholar
  924. 246.
    Schirjver, A.; Polyhedral Proof Methods in Combinatorial Optimization, Discrete Applied Math., Vol. 14, 1986, 111–133Google Scholar
  925. 247.
    Seymour, P. D.; Decomposition of Regular Matroids, J. Combin. Theory, Ser. B., Vol. 28, 1980, 305–359MathSciNetzbMATHGoogle Scholar
  926. 248.
    Grout, V. M., Sanders, P. W., Stockel, C. T.: Reduction Techinques Providing Initial Groupings for Euclidean Tray. Salesman Patching Algorithms, Appl. Math. Modelling, Vol. 13, 1989, 110–114zbMATHGoogle Scholar
  927. 249.
    König, D.: Graphen and ihre Anwendung auf Determinatentheorie and Mengenlehre, Math. Ann., Vol. 77, 1916, 453–465MathSciNetzbMATHGoogle Scholar
  928. 250.
    Teruo, J.: Grundprinzipien der diskreten Optimierung, Diss., TU Dresden, 1977Google Scholar
  929. 251.
    Whitney, H.: On the Abstract Properties of Linear Dependence, Amer. J. Math., Vol. 57, 1935, 509–533MathSciNetGoogle Scholar
  930. 252.
    Wilson, R. J.: An Introduction into Matroid Theory, American Math. Monthly, Vol. 80, 1973, 500–525zbMATHGoogle Scholar
  931. 253.
    Rado, R.: Theorems on Linear Combinatorial Topology and General Measure, Annals of Mathematics, Vol. 44, 1943, 228–270MathSciNetzbMATHGoogle Scholar
  932. 254.
    Lovasz, L.: Submodular Functions and Convexity, in VIII.1. 1–16, 1983, 235–257MathSciNetGoogle Scholar
  933. 255.
    Kerber, A. (Ed.): Diskrete Strukturen, algebraische Methoden and Anwendungen, Tagungsbericht 2. Sommerschule Diskrete Strukturen, Bayreuth, 1985, Bayreuther Math. Schriften, Heft 21, 1986Google Scholar
  934. 256.
    Matheiss, T. H. and Rubin, D. S.: Survey and Comparison of Methods for Finding all Vertices of a Convex Polyhedral Set, Math. of Oper. Res., Vol. 5, 1980, 167–185MathSciNetzbMATHGoogle Scholar
  935. 257.
    Khang, D. B. and Fujiwara, O.: A New Algorithm to Find all Vertices of a Polytope, Oper. Res. Letters, Vol. 8, 1989, 261–264MathSciNetGoogle Scholar
  936. 258.
    Pulleybank, W. R.: Faces of Matching Polyhedra, Ph.D. Thesis, Univ. of Waterloo, Canada, 1973Google Scholar
  937. 259.
    Lovasz, L. and Plummer, M. D.: Matching Theory, Ann. Discrete Math. No. 29, North-Holland, Amsterdam, 1986Google Scholar
  938. 260.
    Recski, A.: Matroid Theory and its Appl., Springer, Berlin, 1987Google Scholar
  939. 261.
    Syslo, M. M., Deo, N., and Kowalik, J. S.: Discrete Optimization Algorithms, Prentice-Hall, Englewood Cliffs, N. J., 1983zbMATHGoogle Scholar
  940. 262.
    Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures, Ann. Discr. Math., No. 10, North-Holland, Amsterdam, 1981Google Scholar
  941. 263.
    Prim, R. C.: Shortest Connection Networks and Some Generalizations, Bell Syst. Tech. J., Vol. 36, 1957, p. 1389Google Scholar
  942. 264.
    Fishburn, P. C.: Combinatorial Optimization Problems for Systems of Subsets, SIAM Review, Vol. 30, No. 4, 1988, 578–588MathSciNetzbMATHGoogle Scholar
  943. 265.
    Schrijver, A.: Min-Max Results in Combinatorial Optimization, in VIII.1. 1–16, 1983, 438–500Google Scholar
  944. 266.
    Hu, T. C.: Multicommodity Networks Flows, Oper. Res., Vol. 11, 1963, 344–360zbMATHGoogle Scholar
  945. 267.
    Marsh, A. B.: Matching Algorithms, Ph.D. Thesis, John Hopkins University, Baltimore, 1979Google Scholar
  946. 268.
    Frobenius, G.: Über Matrizen aus nichtnegativen Elementen, Sitzber. der Preuss. Akad. Wiss., 1912, 456–477Google Scholar
  947. 269.
    Frobenius, G.: Über zerlegbare Determinanten, Sitzber. der Preuss. Akad. Wiss., 1917, 274–277Google Scholar
  948. 270.
    Langevin, A., Soumis, F., and Desrosiers, J.: Classification of Tray. Salesman Problem Formulations, Vol. 9, No. 2, 1990, 127–132MathSciNetzbMATHGoogle Scholar
  949. 271.
    Berge, C.: Optimization and Hypergraph Theory, Europ. J. Oper. Res., Vol. 46, No. 3, 1990, 297–303MathSciNetzbMATHGoogle Scholar
  950. 272.
    Dyckhoff, H.: A Typology of Cutting and Packing Problems, Europ. J. Oper. Res., Vol. 44, No. 2, 1990, 145–159MathSciNetzbMATHGoogle Scholar
  951. 273.
    Reingold, E. M., Nievergelt, J., and Deo, N.: Combinatorial Optimization—Theory and Practice, Prentice-Hall, Englewood Cliffs, New Jersey, 1977Google Scholar
  952. 274.
    Gomory, R. E.: Some Polyhedra Related to Combinatorial Problems, Linear Algebra and Appl., Vol. 2, 1969, 451–558MathSciNetzbMATHGoogle Scholar
  953. 275.
    Raghavachari, M.: A Constructive Method to Recognize the Total Unimodularity of a Matrix, Zeitschr. für Oper. Res., Vol. 20, No. 1, 1976, 59–61MathSciNetzbMATHGoogle Scholar
  954. 276.
    Guignard, M. and Roseenwein, M. B.: Application-oriented Guide for Designing Lagrangean Dual Ascent Algorithms, Eur. J. Oper. Res., Vol. 43, No. 2, 197–205Google Scholar
  955. 277.
    Glover, F. and Wolsey, B.: Aggregating Diophantine Equations, J. Oper. Res., Vol. 16, No. 1, 1972Google Scholar
  956. 278.
    Hoffman, A. J.: Total Unimodularity and Combinatorial Theorems, Linear Algebra and Applications, Vol. 13, 1976, 103–108zbMATHGoogle Scholar
  957. 279.
    Cramer, Y., Hammer, P. L., and Ibaraki, T.: Strong Unimodularity for Matrices and Hypergraphs, Discrete Appl. Math., Vol. 15, 1986, 221–239Google Scholar
  958. 280.
    Jeroslow, R.: The Theory of Cutting-Planes, in VIII.1.1. 6–05, 1979, 21–72Google Scholar
  959. 1.
    Bellman, R.: Dynamic Programming, Princeton Univ. Press, Princeton, N. J., 1957zbMATHGoogle Scholar
  960. 2.
    Bellman, R. and Dreyfus, S.: Applied Dynamic Programming, Princeton Univ. Press, Princeton, New Jersey, 1962Google Scholar
  961. 3.
    Hadley, G.: Nonlinear and Dynamic Programming, Addison-Wesley Publishing Company, Reading, Mass., 1964zbMATHGoogle Scholar
  962. 4.
    Bellman, R. E. and Lee, E. S.: History and Development of Dynamic Programming, IEEE Control Syst. Mag., Vol. 4, No. 4, 1984Google Scholar
  963. 5.
    Schneeweiss, Ch.: Dynamisches Progr., Physica, Würzburg, 1974Google Scholar
  964. 6.
    Morin, T. L. and Marsten, R. E.: Branch-and-Bound Strategies for Dynamic Programming, Oper. Res., Vol. 24, No. 4, 1976, 611–627MathSciNetzbMATHGoogle Scholar
  965. 7.
    Karp, R. M. and Held, M.: Finite-State Processes and Dynamic Programming, SIAM J. of Appl. Math. Vol. 15, No. 3, 1967, 693–718MathSciNetzbMATHGoogle Scholar
  966. 8.
    Held, M. and Karp, R. M.: A Dynamic Programming Approach to Sequencing Problems, SIAM J. of Appl. Math., Vol. 10, 1962Google Scholar
  967. 9.
    Kaufmann, A. and Cruon, R.: Dynamic Programming, Sequential Scientific Management, New York, 1967Google Scholar
  968. 10.
    Wong, P. J.: A New Decomposition Procedure for Dynamic Programming, Oper. Res., Vol. 18, No. 1, 1970, 119–131zbMATHGoogle Scholar
  969. 11.
    Wong, P. J. and Luenberger, D. G.: Reducing the Memory Requirements of Dynamic Progr., Oper. Res., Vol. 16, 1968, 1115–1125zbMATHGoogle Scholar
  970. 12.
    Neumann, K.: Zur Theorie der Dynamischen Optimierung, Teil I und Teil II, Unternehmensforschung, Vol. 9, No. 3, und No. 4, 1965, 169–186 und 201–216Google Scholar
  971. 13.
    Bellman, R.: Dynamic Programming Treatment of the Traveling Salesman Problem, J. ACM, Vol. 9, 1962, 61–63zbMATHGoogle Scholar
  972. 14.
    Karp, R. M. and Held, M.: Finite-State Processes and Dynamic Programming, SIAM J. Appl. Math. Vol. 15, No. 3, 1967, 693–718MathSciNetzbMATHGoogle Scholar
  973. 15.
    Nemhauser, L.: Introduction to Dynamic Progr., Wiley, New York, 1966Google Scholar
  974. 16.
    Denardo, E. V.: Sequential Decision Processes, Doctoral Thesis, Northwestern Univ., Evanston, Illinosis, 1965Google Scholar
  975. 17.
    Angel, E. and Bellman, R.: Dynamic Programming and Partial Differential Equations, Academic Press, New York, 1972zbMATHGoogle Scholar
  976. 18.
    Aris, R.: Discrete Dynamic Programming, Blaisdell Publ. Comp., New York, 1963Google Scholar
  977. 19.
    Beckmann, M. J.: Dynamic Programming of Ecomonic Decisions, Springer, Berlin, 1968Google Scholar
  978. 20.
    Bellman, R. and Gross, O.: Some Combinatorial Problems Arising in the Theory of Multi Stage Processes, J. SIAM, Vol. 2, No. 3, 1954Google Scholar
  979. 21.
    Ibaraki, T.: Solvable Classes of Discrete Dynamic Programming, J. Math. Anal. Appl., Vol. 43, 1973, 642–693MathSciNetzbMATHGoogle Scholar
  980. 22.
    Ibaraki, T.: On the Optimality of Algorithms for Finite State Sequential Decision Processes, J. Math. Anal. Appl., Vol. 53, 1976, 618–643MathSciNetzbMATHGoogle Scholar
  981. 23.
    Rosenthal, A.: Dynamic Programming is Optimal for Certain Sequential Decision Processes, J. Math. Anal. Appt, Vol. 73, 1980, 134–137zbMATHGoogle Scholar
  982. 24.
    Rosenthal, A.: Dynamic Progr. is Optimal for Nonserial Optimization Problems, SIAM J. Comput., Vol. 11, 1982, 47–59, 1980, 134–137Google Scholar
  983. 25.
    Heiman, P.: A Common Schema for Dynamic Programming and Branch and Bound Algorithms, J. ACM, Vol. 36, No. 1, 1989, 97–128Google Scholar
  984. 26.
    Heiman, P. and Rosenthal, A.: A Comprehensive Model of Dynamic Programming, SIAM J. on Algebraic and Discrete Methods, Vol. 6, 1985, 319–334Google Scholar
  985. 27.
    Helman, P.: The Principle of Optimality in the Design of Efficient Algorithms, J. Math. Anal. Appl., Vol. 119, 1986, 97–127MathSciNetzbMATHGoogle Scholar
  986. 28.
    Sniedovich, M.: A New Look at Bellman’s Principle of Optimality, J. Optim. Theory and Appl., Vol. 49, No. 1, 1986, 161–176MathSciNetzbMATHGoogle Scholar
  987. 29.
    Cooper, L. and Cooper, M. W.: Introduction to Dynamic Programming, Pergamon Press, New York, 1981zbMATHGoogle Scholar
  988. 30.
    Denardo, E. V. and Mitten, L. G.: Elements of Sequential Decision Processes, J. of Ind. Eng., Vol. 13, 1967, 106–112Google Scholar
  989. 31.
    Denardo, E. V.: Dynamic Programming—Models and Applications, Prentice-Hall, Englewood Cliffs, N, J., 1982Google Scholar
  990. 32.
    White, D. J.: Dynamic Progr., Holden-Day, San Francisco, CA., 1969Google Scholar
  991. 33.
    Mitten, L. G.: Composition Principles for Synthesis of Optimal Multistage Processes, Oper. Res., Vol. 12, 1964, 610–619MathSciNetzbMATHGoogle Scholar
  992. 34.
    Bellman, R.: The Theory of Dynamic Programming, Bulletin of the AMS, Vol. 60, 1954, 503–515zbMATHGoogle Scholar
  993. 35.
    Bellman, R.: Some Problems in the Theory of Dynamic Programming, Econometrica, Vol. 22, 1954, 37–48MathSciNetzbMATHGoogle Scholar
  994. 36.
    Morin, T. L.: Monotonicity and the Principle of Optimality, J. of Mathematical Analysis and Applications, Vol. 86, 1982, 665–674MathSciNetGoogle Scholar
  995. 37.
    Porteus, E.: An Informal Look at the Principle of Optimality, Mgmt. Sci., Vol. 21, 1975, 1346–1348Google Scholar
  996. 38.
    Dreyfus, S. E. and Law, A. M.: The Art and Theory of Dynamic Programming, Academic press, New York, 1977zbMATHGoogle Scholar
  997. 39.
    Neumann, K. und Niedereichholz, J.: Dynamische Programmierung—Theorie und Anwendungen, Bibliographisches Inst., Mannheim, 1969Google Scholar
  998. 40.
    Morin, T. L.: Computational Advances in Dynamic Programming, in VIII.1. 7–41, 1978Google Scholar
  999. 41.
    Puterman, M. L. (Ed.): Dynamic Programming and its Applications, Academic Press, New York, 1978zbMATHGoogle Scholar
  1000. 42.
    Carraway, R. L., Morin, T. L., and Moskowitz, H.: Generalized Dynamic Programming for Stochastic Combinatorial Optimization, Oper. Res., Vol. 37, No. 5, 1989, 819–829MathSciNetzbMATHGoogle Scholar
  1001. 43.
    Mitten, L. G.: Preference Order Dynamic Programming, Management Science, Vol. 21, 1976, 43–46MathSciNetGoogle Scholar
  1002. 44.
    Sniedovich, M.: Dynamic Programming and the Principles of Optimality, J. Math. Anal. Appl., Vol. 65, 1978, 586–606MathSciNetzbMATHGoogle Scholar
  1003. 45.
    Henig, M. I.: The Principle of Optimality in Dynamic Programming, with Returns in Partially Ordered Sets, Math. Oper. Res., Vol. 10, 1985, 462–470MathSciNetzbMATHGoogle Scholar
  1004. 46.
    White, D.J.: Dynamic Programming, Markov Chains and the Method of Successive Approximations, J. of Mathematical Analysis and Appl., Vol. 6, 1963, 373–376zbMATHGoogle Scholar
  1005. 47.
    Piehler, J.: Einführung in die Dynamische Optimierung, Teubner, Leipzig, 1966zbMATHGoogle Scholar
  1006. 48.
    Carraway, R. L., Morin, T. L., and Moskowitz, H.: Generalized Dynamic Programming for Multicriteria Optimization, Eur. J. Oper. Res., Vol. 44, 1990, 95–104MathSciNetzbMATHGoogle Scholar
  1007. 49.
    Carraway, R. L.: Multicriteria Finite Dynamic Programming, Ph.D. Diss., Purdue Univ., 1984Google Scholar
  1008. 50.
    Carraway, R. L and Morin, T. L.: Theory and Applications of Generalized Dynamic Programming—An Overview, Int. J. of Computers and Mathematics with Applications, Vol. 16, 1988, 779–788MathSciNetzbMATHGoogle Scholar
  1009. 1.
    Weinberg, F. (Ed.): Branch and Bound—Eine Einfuehrung, 2. Auflage, Springer, Berlin, 1973Google Scholar
  1010. 2.
    Lawler, E. L. and Wood, D. E.: Branch and Bound Methods—a Survey, J. of the O. R. Society of America, Vol. 14, 1966, 699–719MathSciNetzbMATHGoogle Scholar
  1011. 3.
    Ibaraki, T.: Comput. Efficiency of Approximate Branch-and-Bound Algorithms, Math. of Oper. Res., Vol. 1, No. 3, 1979, 287–298Google Scholar
  1012. 4.
    Mitten, L. G.: Branch-and-Bound Method—General Formulation and Properties, Operations Research, Vol. 18, 1970, 24–34MathSciNetzbMATHGoogle Scholar
  1013. 5.
    Morin, T. L. and Marsten, R. E.: Branch-and-Bound Strategies for Dynamic Programming, Oper. Res., Vol. 24, No. 4, 1976, 611–627MathSciNetzbMATHGoogle Scholar
  1014. 6.
    Rinnooy Kan, A. H. G.: On Mitten’s Axioms for Branch-and-Bound, Oper. Res., Vol. 24, No. 6, 1976, 1176–1178Google Scholar
  1015. 7.
    Kolesar, P. J.: A Branch-and-Bound Algorithm for the Knapsack Problem, Mgmt. Sci., Vol. 13, 1967, 723–735Google Scholar
  1016. 8.
    Martello, and Toth, P.: An Upper Bound for the Zero-One Knapsack Problem and a Branch and Bound Algorithm, Eur. J. Oper. Res., Vol. 1, 1977, 169–175MathSciNetGoogle Scholar
  1017. 9.
    Land, A. and Doig, A. G.: An Automatic Method of Solving Discrete Programming Problems, Econometrica, Vol. 28, 1960, 497–520MathSciNetzbMATHGoogle Scholar
  1018. 10.
    Garfinkel, R. S.: Branch-and-Bound Methods for Integer Programming, in VIII.1. 6–05, 1979Google Scholar
  1019. 11.
    Tomlin, J. A.: An Improved Branch-and-Bound Method for Integer Programming, Oper. Res., Vol. 19, 1971, 1363–1373MathSciNetGoogle Scholar
  1020. 12.
    Garfinkel, R. S. and Nemhauser, G. L.: Integer Progr., New York, 1972Google Scholar
  1021. 13.
    Balas, E.: A Note on the Branch-and-Bound Principle, Univ. of Toronto, February 1967Google Scholar
  1022. 14.
    Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karel, C.: An Algorithm for the Traveling Salesman Problem, Oper. Res., Vol. 11, No. 6, 1963, 972–989zbMATHGoogle Scholar
  1023. 15.
    Beckmann, M. and Kuenzi, H. P. (Eds.): Einfuehrung in die Methode Branch and Bound, Springer, Berlin, 1968Google Scholar
  1024. 16.
    Jeffreys, M.: Some Ideas on Formulation Strategies for Integer Programming Problems so as to Reduce the Number of Nodes Generated by a Branch-and-Bound Algorithm, Working Paper 74/2, Wootton, Jeffreys and Partners, London, 1974Google Scholar
  1025. 17.
    Mitra, G.: Investigations of Some Branch and Bound Strategies for the Solution of Mixed-Integer Linear Programs, Math. Progr., Vol. 4, 1973, 155–170zbMATHGoogle Scholar
  1026. 18.
    Singhal, J.: Fixed Order Branch-and-Bound Methods for Mixed-Integer Programming, Diss., Dept. of Management Inf. Systems, Univ. of Arizona, 1982Google Scholar
  1027. 19.
    Beale, E. M. L.: Branch-and-Bound Methods for Mathematical Programming, Annals of Discrete Mathematics, Vol. 5, 1979, 201–219MathSciNetzbMATHGoogle Scholar
  1028. 20.
    Ibaraki, T.: The Power of Dominance Relations in Branch and Bound Algorithms, J. of the ACM, Vol. 24, 1977, 264–279MathSciNetzbMATHGoogle Scholar
  1029. 21.
    Ibaraki, T.: Branch-and-Bound Procedure and State-Space Representation of Combinatorial Optimization Problems, Inf. Cont., Vol. 36, 1978, 1–27MathSciNetzbMATHGoogle Scholar
  1030. 22.
    Fischetti, M. and Toth, P.: An Additive Bounding Procedure for Combinatorial Optimization Problems, Oper. Res., Vol. 37, No. 2, 1989, 319–328MathSciNetzbMATHGoogle Scholar
  1031. 23.
    Tarjan, R. E.: Finding Cttimum Branchings, Networks, Vol. 7, 25–35Google Scholar
  1032. 24.
    Smith, D. R.: Random Trees and the Analysis of Branch and Bound Procedures, Journal of the ACM, Vol. 31, No. 1, 1984Google Scholar
  1033. 25.
    Glover, F.: Parametr. Branch and Bound, OMEGA, Vol. 6, 1978, 145–152Google Scholar
  1034. 26.
    Glover, F. and Tangedahl, L.: Dynamic Strategeries for Branch-and-Bound, OMEGA, Vol. 4, 1976, 571–579Google Scholar
  1035. 27.
    Bazaraa, M. S. and Elshafei, A. N.: On the Use of Fictitous Bounds in Tree Search Algorithms, Mgmt. Sci., Vol. 23, 1977, 904–908zbMATHGoogle Scholar
  1036. 28.
    Stone, H. S. and Sipala, P.: The Average Complexity of Depth-First Search with Bachtracking and Cutoff, IBM J. Res. and Dev., Vol. 30, No. 3, 1981, 242–258Google Scholar
  1037. 29.
    Veniaminov, S. S.: Additional Cuttoff Rules for the Branch-and-Bound Method, Tekhnicheskaya Kibernetica, No. 3, 1984, 59–63MathSciNetGoogle Scholar
  1038. 30.
    Skaletskii, V. V.: Modified Branch-and-Bound Method for Solving a Series of Problems, Automation and Remote Control, Vol. 49, No. 4, 1988, 493–499MathSciNetGoogle Scholar
  1039. 31.
    Ibaraki, T.: Theoretical Comparisons of Search Strategies in Branch-and-Bound Algorithms, Intern. J. Comput. Inf. Sci., Vol. 5, No. 4, 1976, 315–344MathSciNetzbMATHGoogle Scholar
  1040. 32.
    Ibaraki, T.: On the Computational Efficiency of Branch-and-Bound Algorithms, J. Oper. Res. Soc. Japan, Vol. 20, 1977, 16–35MathSciNetzbMATHGoogle Scholar
  1041. 33.
    Breu, R. and Burdet, C. A.: Branch and Bound Experiments in 0–1 Programming, Math. Progr. Study, Vol. 2, 1974, 1–50MathSciNetGoogle Scholar
  1042. 34.
    Jeroslow, R. G.: Trivial Integer Programs Unsolvable by Branch-and-Bound, Math. Progr., Vol. 6, No. 1, 1974, 105–109zbMATHGoogle Scholar
  1043. 35.
    Jaeschke, G.: Branching and Bounding—Eine allgemeine Methode zur Lösung kombinatorischer Probleme, Ablauf-and Planungsforschung, Vol. 5, No. 3, 1964Google Scholar
  1044. 1.
    Kohlas, J.: Monte Carlo Simulation in Operation Research, Springer, Berlin, 1972Google Scholar
  1045. 2.
    Sasaki, K.: Statistics for Morden Business Decision Making, Wadsworth Publishing Co., Belmont, California, 1968Google Scholar
  1046. 3.
    Ross, S.: Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, 1970zbMATHGoogle Scholar
  1047. 4.
    Bohachevsky, I. O., Johnson, M. E., and Stein, M. L.: Generalized Simulated Annealing for Function Optimization, Technometrics, Vol. 28, No. 3, August 1986, 209–217zbMATHGoogle Scholar
  1048. 5.
    Anily, S. and Federgruen, A.: Simulated Annealing Methods with Gen. Acceptance Probabilities, J. of Appl. Probab., Vol. 24, 1987Google Scholar
  1049. 6.
    Krikpatrick, S., Gelatt, Jr. C. D., and Vecçhi, M. P.: Optimization by Simulated Annealing, Science, Vol. 220, No. 4598, 1983, 671–680MathSciNetGoogle Scholar
  1050. 7.
    Lundy, M. and Mees, A.: Convergence of the Annealing Algorithm, Math. Progr., Vol. 34, 1986, 111–124MathSciNetzbMATHGoogle Scholar
  1051. 8.
    Fukao, T. and Zhao, Y.: Stochastic Distributed Optimization Algorithm, Trans. IECE Japan, J69-A, Vol. 12, 1986, 1492–1501Google Scholar
  1052. 9.
    Romeo, F., Vincentelli, A., and Sechen, C.: Research on Simulated-Annealing at Berkeley, Proceedings ICCD, Oct. 1984, 652–657Google Scholar
  1053. 10.
    Romeo, F., Vincentelli, A.: Probabilistic Hill Climbing Algorithms—Properties and Applications, Univ. of California, Berkeley, Report No. UCB/ERL M84 /34, 1984Google Scholar
  1054. 11.
    Mitra, D., Romeo, F., Vincentelli, A.: Convergence and Finite Time Behavior of Simulated Annealing, Adv. Appl. Probab., Vol. 18, 1986, 747–771zbMATHGoogle Scholar
  1055. 12.
    Lasserre, J. B., Varaiya, P. P., and Walrad, J.: Simulated Annealing, Random Search, Multistart or SAD?, Systems and Control Letters, Vol. 8, 1987, 297–301zbMATHGoogle Scholar
  1056. 13.
    Dixon, L. C. W. and Szego, G. P. (Eds.): Toward Global Optimization, North Holland, Amterdam, 1975Google Scholar
  1057. 14.
    Corana, A., Marchesi, M., Martini, C., and Ridella, S.: Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm, ACM Trans. Math. Software, Vol. 13, No. 3, 1987, 262–280MathSciNetzbMATHGoogle Scholar
  1058. 15.
    Maffioli, F.: Randomized Algorithms in Combinatorial Optimization—A Survey, Discerte Applied Math., Vol. 14, 1986, 157–170MathSciNetzbMATHGoogle Scholar
  1059. 16.
    Chams, M., Hertz, A., and De Werra, D.: Some Experiments with Simulated Annealing for Coloring Graphs, Eur. J. Oper. Res., Vol. 32, 1987, 260–266zbMATHGoogle Scholar
  1060. 17.
    Burkard, R. E. and Rendl, F.: A Thermodynamically Motivated Simulated Procedure for Combinatorial Optimization Problems, Eur. J. of Oper. Res., Vol. 17, 1984, 169–174zbMATHGoogle Scholar
  1061. 18.
    Coffman, E. G. Jr., Lueker, G. S., and Rinnooy Kan, A. H. G: Asymptotic Methods in the Probabilistic Analysis of Sequencing and Packing Heuristics, Mgmt. Sci., Vol. 34, No. 3, 1988, 266–290zbMATHGoogle Scholar
  1062. 19.
    Karmarkar, N., Karp, R. M., Lueker, G. S., and Odlyzko, A. M.: Probabilistic Analysis of Optimum Partitioning, J. Appl. Probab., Vol. 23, 1986, 626–645MathSciNetzbMATHGoogle Scholar
  1063. 20.
    Buslenko, N. P.: The Monte-Carlo Method. The Method of Statistical Trials, Pergamon Press, Oxford, 1966Google Scholar
  1064. 21.
    Kirkpatrick, S.: Optimization by Simulated Annealing—Quantitative Studies, J. Statist. Phys., Vol. 34, 1984, 975–986MathSciNetGoogle Scholar
  1065. 22.
    Gelfand, S. B.: Analysis of Simulated Annealing Type Algorithms, Doctoral Thesis, M. I, T., Lab. for Inf. and Decision Systems, Cambridge, Mass., 1988Google Scholar
  1066. 23.
    Price, W. L.: A Controlled Random Search Procedure for Global Optimization, in VIII.1. 9–13, 1978, 71–84Google Scholar
  1067. 24.
    Price, W. L.: A Controlled Random Search Procedure for Global Optimization, Comput. J., Vol. 20, 1977, 367–370zbMATHGoogle Scholar
  1068. 25.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equations of State Calculations with Fast Computing Machines, J. Chem. Phy., Vol. 21, 1953, 1087–1091Google Scholar
  1069. 26.
    Aigner, D.: Principles of Statistical Decision Making, Macmillan, London, 1968Google Scholar
  1070. 27.
    Schreider, Y. A.: The Monte Carlo Method, Pergamon Press, New York, 1965Google Scholar
  1071. 28.
    Sobol, I. M.: Die Monte Carlo Methode, VEB Deutscher Verlag der Wissenschaften, Berlin, 1971zbMATHGoogle Scholar
  1072. 29.
    Soran, P. D.: State-of-the-Art Monte Carlo 1988, Lawrence Livermore National Lab., Ca., 1988Google Scholar
  1073. 30.
    Rinnooy Kan, A. H. G. and Timmer, G. T.: Stochastic Global Optimization Methods, Part I—Clustering Methods and Part II—Multi-Level Methods, Math. Progr., Vol. 39, No. 1, 1987, 27–56 and 57–80Google Scholar
  1074. 31.
    Potschka, K.: Generatoren für Zufallszahlen, Angewandte Informatik, Heft 6, 1972, 263–268Google Scholar
  1075. 32.
    Chambers, R.: Random Number Generation, IEEE Spectrum, 1967, 48–56Google Scholar
  1076. 33.
    Karp, R.: Probabilistic Analysis of Partitioning Algorithms for the Travelling Salesman Problem in the Plane, Math. of Oper. Res., Vol. 2, 1977, 209–224MathSciNetzbMATHGoogle Scholar
  1077. 34.
    Johnson, D. S.: Optimization by Simulated Annealing—A Tutorial, ATandT Bell Laboratories, 12th Int. Sump. on Math. Progr., 1985Google Scholar
  1078. 35.
    Devroye, L.: Progressive Global Random Search of Continuous Functions, Math. Progr., Vol. 15, 1978, 330–342MathSciNetzbMATHGoogle Scholar
  1079. 36.
    Brooks, S. H.: A Discussion of Random Methods for Seeking Maxima, Oper. Res., Vol. 6, 1958, 244–251MathSciNetGoogle Scholar
  1080. 37.
    Boender, C. G. E., Rinnooy Kan, A. H. G., Stougie, L., and Timmer, G. T.: A Stochastic Method for Global Optimization, Math. Progr., Vol. 22, 1982, 125–140zbMATHGoogle Scholar
  1081. 38.
    Rinnooy Kan, A. H. G., Boender, C. G. E., and Timmer, G. Th.: A Stochastic Approach to Global Optimization, in VIII.1. 1–92, 1984, 282–308Google Scholar
  1082. 39.
    Timmer, G. T.: Global Optimization—A Stochastic Approach, Ph.D. Diss., Erasmus Universiteit Rotterdam, Centrum Wiskunde en Informatica, Amsterdam, 1984Google Scholar
  1083. 40.
    Solis, F. J. and Wets, R. J. E.: Minimization by Random Search Techniques, Math. of Oper. Res., Vol. 6, 1981, 19–30MathSciNetzbMATHGoogle Scholar
  1084. 41.
    Van Laarhoven, P. J. M. and Aarts, E. H. L.: Simulated Annealing —a Review of the Theory and Applications, Kluwer, Dordrecht, 1987Google Scholar
  1085. 42.
    Cerny, V.: A Thermodynamical Approach to the Travelling Salesman—An Efficient Simulation Algorithm, J. Optim. Theory and Appl., Vol. 15, 1985, 41–51MathSciNetGoogle Scholar
  1086. 43.
    Hajek, B. and Sasaki, G.: Simulated Annealing—to Cool or not, Syst. Control Letters, Vol. 12, No. 5, 1989, 443–447MathSciNetzbMATHGoogle Scholar
  1087. 44.
    Sasaki, G. and Hajek, B.: The Time Complexity of Maximum Matching by Simulated Annealing, J. ACM, Vol. 35, 1988, 387–403MathSciNetGoogle Scholar
  1088. 45.
    Aarts, E. and Laarhoven, P.: Statistical Cooling—A Unified Approach to Combinatorial Optimization Problems, Philips J. Res., Vol. 40, Vol. 40, 1985, 193–226Google Scholar
  1089. 46.
    Price, W. L.: Global Optimization by Controlled Random Search, J. Optimization Theory and Appl., Vol. 40, 1983, 333–348zbMATHGoogle Scholar
  1090. 47.
    Spirakis, P. G.: Probabilistic Algorithms, Algorithms with Random Inputs and Random Combinatorial Structures, Ph.D. Thesis, Harvard Univ., Dept. of Mathematics, 1981Google Scholar
  1091. 48.
    Zemel, E.: Random Binary Search—A Randomizing Algorithm for Global Optimization in RI, Math. Oper. Res., Vol. 11, No. 4, 1986, 651–662MathSciNetzbMATHGoogle Scholar
  1092. 49.
    Archetti, F. and Betro, B.: A Probabilistic Algorithm for Global Optimization, Calcolo, Vol. 16, 1979, 335–343MathSciNetzbMATHGoogle Scholar
  1093. 50.
    Johnson, D. S., Aragon C. R., Mc Geoch, L. A., and Schevon, C.: Optimization by Simulated Annealing-An Experimental Evaluation, Part I-Graph Partitioning, Oper. Res., Vol. 37, No. 6, 1989, 865–892zbMATHGoogle Scholar
  1094. 51.
    Smith, R. L.: Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions, Oper. Res., Vol. 32, 1984, 1296–1308MathSciNetzbMATHGoogle Scholar
  1095. 52.
    Luus, R. and Brenek, P.: Incorporation of Gradient into Random Search Optimization, Chem. Eng. Technol., Vol. 12, No. 5, 1989, 309–318Google Scholar
  1096. 53.
    Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, Massachusetts, 1989Google Scholar
  1097. 54.
    Eglese, R. W.: Simulated Annealing-A Tool for Operational Research, Eur. J. Oper. Res., Vol. 46, No. 3, 1990, 271–281MathSciNetzbMATHGoogle Scholar
  1098. 55.
    Rutenbar, R. A.: Simulated Annealing Algorithms An Overview, IEEE Circuits and Devices Mag., Vol. 5, No. 1, 1989, 19–26Google Scholar
  1099. 1.
    Foulds, L. R.: Heuristic Problem-Solving Approach, J. Oper. Res. Soc., Vol. 34, No. 10, 1983Google Scholar
  1100. 2.
    Müller-Merbach, H.: Morphologie heuristischer Verfahren, Zeitschrift für Operations Research, Vol. 20, 1976, 69–87Google Scholar
  1101. 3.
    Streim, H.: Heuristische Lösungsverfahren-Versuch einer Begriffserklärung, Zeitschr. für Oper. Res., Vol. 19, 1975, 143–162zbMATHGoogle Scholar
  1102. 4.
    Gere, W. S.: Heuristics in Job Scheduling, Mgmt. Sci., Vol. 13, 1966, 167–190Google Scholar
  1103. 5.
    Warnecke, H. J., Warschat, J. und Heller, A.: Heuristische Optimierung diskreter Systeme, in VIII.1. 1–55, 1981Google Scholar
  1104. 6.
    Sergienko, I. V. and Shilo, V. P.: Prababilistic Approach to Assessment of Heuristics in 0–1 Linear Progr., Cybernetics, Vol. 23, No. 1, 1987, 1–7MathSciNetzbMATHGoogle Scholar
  1105. 7.
    Karp, R. M. and Steele, J. M.: Probabilistic Analysis of Heuristics, in VIII.1. 6–199, 1985, 181–205MathSciNetGoogle Scholar
  1106. 8.
    Glover, F.: Heuristics for Integer Programming Using Surrogate Constraints, Decis. Sci., Vol. 8, 1977, 156–166Google Scholar
  1107. 9.
    Kochenberger, G. A., Mc Carl, B. A., and Wyman, F. P.: A Heuristic for General Integer Programming, Decis. Sci., Vol. 15, 1968, B196 - B207Google Scholar
  1108. 10.
    Thompson, G. L. and Karp, R. L.: A Heuristic Approach to Solving Traveling Salesman Problems, Mgmt. Sci., Vol. 10, 1964, 225–247Google Scholar
  1109. 11.
    Pearl, J.: Heuristic-Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, Reading, Mass., 1984Google Scholar
  1110. 12.
    Balas, E. and Martin, R. K.: Pivot and Complement-A Heuristic for 0–1 Programming, Mgmt. Sci., Vol. 26, No. 1, 1980, 86–96MathSciNetzbMATHGoogle Scholar
  1111. 13.
    Zanakis, S. H. and Evans, J. R.: Heuristic Optimization-Why, When and How to Use it, Interfaces, Vol. 11, 1981, 84–89Google Scholar
  1112. 14.
    Evans, J. R.: Structural Analysis of Local Search Heuristics in Combin. Optimization, Comput. Oper. Res., Vol. 14, 1987, 465–477zbMATHGoogle Scholar
  1113. 15.
    Glover, F. and Greenberg, H. J.: New Approaches for Heuristic Search-A Bilateral Linkage with Artificial Intelligence, Eur. J. Oper. Res., Vol. 39, No. 2, 1989, 119–130MathSciNetzbMATHGoogle Scholar
  1114. 16.
    Glover, F.: Tabu Search-Part I, ORSA Journal on Computing, Vol. 1, No. 3, 1989, 190–206zbMATHGoogle Scholar
  1115. 1.
    Roy, B.: Problems and Methods with Multiple Objective Functions, Math. Progr., Vol. 1, 1971, 239–266zbMATHGoogle Scholar
  1116. 2.
    Keeney, R. L. and Raiffa, H.: Decision Analysis with Multiple Conflicting Objectives, Wiley, New York, 1976Google Scholar
  1117. 3.
    Fandel, G. und Wilhelm, J.: Zur Entscheidungstheorie bei mehrfacher Zielsetzung, Zeitschr. für Oper. Res., Vol. 20, No. 1, 1976, 1–21MathSciNetzbMATHGoogle Scholar
  1118. 4.
    Briskin, L. E.: A Method for Unifying Multiple Objective Functions, Mgmt. Sci., Vol. 12, No. 10, 1966Google Scholar
  1119. 5.
    Geoffrion, A. M.: Solving Bicriterion Mathematical Programs, Oper. Res., Vol. 15, 1967, 39–545MathSciNetzbMATHGoogle Scholar
  1120. 6.
    Benayoun, R., De Montgolfier, J., Tergny, J., and Laritchev, O.: Linear Progr. with Multiple Objective Functions-STEP Method (STEM), Math. Progr., Vol. 1, 1971, 366–375zbMATHGoogle Scholar
  1121. 7.
    Rosenthal, R. E.: Principles of Multiobjectives Optimization, Naval Postgraduate School, Monterey, CA, US Government Technical Rept. No. AD-A147520, 1984Google Scholar
  1122. 8.
    Ignizio, J. P.: Linear Programming in Single and Multiple Objective Systems, Prentice-Hall, New Jersey, 1982zbMATHGoogle Scholar
  1123. 9.
    Zionts, S. (Ed.): Multiple Criteria Problem Solving, Springer Verlag, New York, 1978zbMATHGoogle Scholar
  1124. 10.
    Sadagopan, S.: Multiple Criteria Mathematical Programming—A Unified Interactive Approach, Ph.D. Diss., School of Industrial Eng., Purdue Univ. West Lafayette, In., December 1979Google Scholar
  1125. 11.
    Ignizio, J. P.: Linear Programming in Single and Multiple Objective Systems, Prentice-Hall; Englewood Cliffs, New Jersey, 1982Google Scholar
  1126. 12.
    Steuer, R. E.: Generating Efficient Extreme Points in Linear Multiple Programming Theory and Computational Experience, Doctoral Diss., Univ. of North Carolina, 1973Google Scholar
  1127. 13.
    Reeves, G. R. and Reid, R. C.: Minimum Values Over the Efficient Set in Multiple Objective Decision Making, Eur. J. Oper. Res., Vol. 36, No. 3, 1988, 334–338MathSciNetGoogle Scholar
  1128. 14.
    Sadagopan, S. and Ravindran, A.: Interactive Solution of Bi-Criteria Math. Programs, Nay. Res. Logist. Quart., Vol. 29, No. 3, 1982Google Scholar
  1129. 15.
    Cochrane, J. L. and Zeleny, M.: Multiple Criteria Decision Making, Univ. of South Carolina Press, Columbia, South Carolina, 1973Google Scholar
  1130. 16.
    Evans, J. P. and Steuer, R. E.: A Revised Simplex Method for Linear Multiple Objective Programming, Math. Progr., Vol. 5, 1973, 1MathSciNetGoogle Scholar
  1131. 17.
    Zimmermann, H.-J.: Fuzzy Programming and Linear Progr. with Several Objective Functions, Fuzzy Sets and Systems, Vol. 1, 1978, 45–56MathSciNetzbMATHGoogle Scholar
  1132. 18.
    Luhandjula, M. K.: Fuzzy Approaches for Multiple Objective Linear Fract. Optimization, Fuzzy Sets and Systems, Vol. 13, 1984, 11–24MathSciNetzbMATHGoogle Scholar
  1133. 19.
    Hannan, E. L.: Linear Programming with Multiple Fuzzy Goals, Fuzzy Sets and Systems, Vol. 6, 1981, 235–248MathSciNetzbMATHGoogle Scholar
  1134. 20.
    Geoffrion, A. M.: Proper Efficiency and the Theory of Vector Maximization, Journal of Math. Analysis and Appl., Vol. 22, 1968, 618–630MathSciNetzbMATHGoogle Scholar
  1135. 21.
    Klahr, C. N.: Multiple Objectives in Mathematical Programming, Operations Research, Vol. 6, 1958, 849–855MathSciNetGoogle Scholar
  1136. 22.
    Strebel, H.: Zur Gewichtung von Urteilskriterien bei mehrdimensionalen Zielsystemen, Zeitschr, für Betriebswirtschaft, Vol. 42, 1972, 89–128Google Scholar
  1137. 23.
    Dinkelbach, W.: Unternehmerische Entscheidungen bei mehrfacher Zielsetzung, Zeitschr. für Betriebswirtschaft, Vol. 32, 1962, 739Google Scholar
  1138. 24.
    Bod, P.: Programmation lineaire dans le cas de plusiers fonctions objectifs donnees simultanement (en hongrois), Publ. by the Math. Inst. of the Hungarian Academy of Sciences, Vol. 8, 1963, 541–554MathSciNetGoogle Scholar
  1139. 25.
    Zimmermann, H.-J.: Multi Criteria Decision Making in Crisp and Fuzzy Environments, in Vííí.1. 12–24, 1986Google Scholar
  1140. 26.
    Hwang, Ch.-L. and Yoon, K.: Multiple Attribute Decision Making, Springer, Berlin, 1981zbMATHGoogle Scholar
  1141. 27.
    Hwang, Ch.-L. and Masud, A. S.: Multiple Objective Decision Making, Methods and Applications, Springer, Berlin, 1979zbMATHGoogle Scholar
  1142. 28.
    Baas, M. S. and Kwakernaak, H.: Rating and Ranking of Multiple-Aspect Aternatives Using Fuzzy Sets, Automatica, Vol. 13, 1977, 47–58MathSciNetzbMATHGoogle Scholar
  1143. 29.
    Buckley, J. J.: Ranking Alternatives Using Fuzzy Numbers, Fuzzy Sets and Systems, Vol. 15, 1985, 21–32MathSciNetzbMATHGoogle Scholar
  1144. 30.
    Johnson, E.: Studies in Multiobjective Decision Models, Lund, 1968Google Scholar
  1145. 31.
    Rhode, R. und Weber, R.: Effiziente Punkte in linearen Vektormaximumproblemen, in VIII.1. 1–55, 1981Google Scholar
  1146. 32.
    Blin, J. M.: Fuzzy Sets in Multiple-Criteria Decision Making, in VIII.1. 11–33, 1977Google Scholar
  1147. 33.
    Slarr, M. K. and Zeleny, M. (Eds.): Multiple-Criteria Decision Making, Academic Press, New York, 1977Google Scholar
  1148. 34.
    Saaty, T. L.: Exploring the Interface Between Hierarchies, Multiple Objectives, and Fuzzy Sets, Fuzzy Sets and Systems, Vol. 1, No. 1, 1978, 57–68MathSciNetzbMATHGoogle Scholar
  1149. 35.
    Rommelfanger, H.: Zur Lösung linearer Vektoroptimierungssysteme mit Hilfe der Fuzzy Set Theory, in VIII.1. 1–57, 1985, 431–438MathSciNetGoogle Scholar
  1150. 36.
    Leberling, H.: On Finding Compromise Solutions in Multicriteria Problems Using the Fuzzy Min-Operator, Fuzzy Sets and Systems, Vol. 6, 1981, 105–118MathSciNetzbMATHGoogle Scholar
  1151. 37.
    Leberling, H.: Entscheidungsfindung bei divergierenden Faktorinteressen und relaxierten Kapazitätsrestriktionen mittels eines unscharfen’ Lösungsansatzes, Zeitschr. für betriebsw. Forschung, Vol. 35, 1983, 398–419Google Scholar
  1152. 38.
    Luc, D. T.: Scalarization of Vector Optimization Problems, J. Optim. Theory and Appl., Vol. 55, No. 1, 1987, 85–102MathSciNetzbMATHGoogle Scholar
  1153. 39.
    Steuer, R. E.: Multiple Criteria Optimization—Theory, Computation, and Application, Wiley, New York, 1986zbMATHGoogle Scholar
  1154. 40.
    Steuer, R. E.: Multiple Criteria Linear Programming with Interval Criterion Weights, Mgmt. Sci., Vol. 23, 1976, 305–316MathSciNetzbMATHGoogle Scholar
  1155. 41.
    Hansen, P., Labbe, M., and Wendell, R. E.: Sensitivity Analysis in Multiple Objective Linear Programming—The Tolerance Approach, Eur. J. Oper. Res., Vol. 38, No. 1, 1989, 63–69MathSciNetzbMATHGoogle Scholar
  1156. 42.
    Yano, H. and Sakawa, M.: A Unified Approach for Characterizing Pareto Optimal Solutions of Multiobjective Optimization Problems—The Hyperplane Method, Eur. J. Oper. Res., Vol. 39, 1989, 61–70MathSciNetzbMATHGoogle Scholar
  1157. 43.
    Chankong, V. and Haimes, Y. Y.: Multiobjective Decision Making—Theory and Methodology, North-Holland, New York, 1983zbMATHGoogle Scholar
  1158. 44.
    Sakawa, M.: Optimization in Nonlinear Systems with Single and Multiple Objectives, Morikita, Tokyo, 1986 (in Japanese)Google Scholar
  1159. 45.
    Jahn, J.: Some Characterizations of the Optimal Solutions of a Vector Optimization Problem, OR Spektrum, Vol. 7, 1985, 7–17MathSciNetzbMATHGoogle Scholar
  1160. 46.
    Evans, G. W.: An Overview of Techniques for Solving Multiobjective Math. Programs, Mgmt. Sci., Vol. 30, No. 11, 1984, 1268–1282zbMATHGoogle Scholar
  1161. 47.
    Zionts, S.: Integer Linear Programming with Multiple Objectives, Annals of Discrete Mathematics, Vol. 1, 1977, 551–562MathSciNetGoogle Scholar
  1162. 48.
    Henig, M. L.: Multicriteria Dynamic Programming, Ph.D. Diss., Yale Univ., 1978Google Scholar
  1163. 49.
    Zeleny, M.: Linear Multiobjective Programming, Ph.D. Diss., Graduate School of Mgmt., The Univ. of Rochester, New York, 1972Google Scholar
  1164. 50.
    Zeleny, M.: Mult. Criteria Dec. Making, Mc Graw-Hill, New York, 1982Google Scholar
  1165. 51.
    Yu, P. L. and Zeleny, M.: The Set of All Nondominated Solutions in Linear Cases and a Multicriteria Simplex Method, J. Math. Anal. Appl., Vol. 49, 1975, 430–468MathSciNetzbMATHGoogle Scholar
  1166. 52.
    Fandel, G. and Gal, T. (Eds.): Multiple Criteria Decision Making—Theory and Application, Springer, Berlin, 1980zbMATHGoogle Scholar
  1167. 53.
    Thiriez, H. and Zionts, S. (Eds.): Multiple Criteria Decision Making, Springer, Berlin, 1976zbMATHGoogle Scholar
  1168. 54.
    Mc Millan, C.: Mathematical Programming with Multiple Objectives, in VIII.1. 1–110, 1975Google Scholar