Advertisement

Optimierung pp 159-196 | Cite as

Überblick über anwendungsbezogene Veröffentlichungen

  • Kurt Littger

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

VII.1 Produktionsplanung

  1. 1.
    Kilger, W.: Optimale Produktionsplanug and Absatzplanung, Entscheidungsmodelle für den Produktions-und Absatzbereich industrieller Bestriebe, Westdeustscher Verlag, Opladen, 1973Google Scholar
  2. 2.
    Arrow, K. J., Karlin, S., and Scarf, H.: Studies in the Mathematical Theory of Inventory and Production, Stanford Univ. Press, Stanford, Cal., 1963Google Scholar
  3. 3.
    Hanssmann, F.: Operations Research in Production and Inventory, Wiley, New York, 1962zbMATHGoogle Scholar
  4. 4.
    Peterson, R. and Silver, E. A.: Decision Systems for Inventory Management and Production Planning, Wiley, New York, 1985Google Scholar
  5. 5.
    Riggs, J. L.: Production Systems, Wiley, New York, 1970Google Scholar
  6. 6.
    Royce. N. J.: Linear Programming Applied to Production and Operation of a Chemical Process, Operational Res. Quarterly, Vol. 21, No. 1, 1970, 61–80Google Scholar
  7. 7.
    Peters, L.: Simultane Produktions-und Investitionsplanung mit Hilfe der Portfolio Selection, Duncker and Humblot, 1971Google Scholar
  8. 8.
    Jarr, K.: Simultane Produktions-und Personalplanung, Zeitschrift für Betriebswirtschaft, Vol. 44, No. 10, 1974, 685–702Google Scholar
  9. 9.
    Johnson, A. and Montgomery, D. C.: Operations Research in Production Planning, Scheduling and Inventory Control, Wiley, New York, 1974Google Scholar
  10. 10.
    Zangwill, W. I.: A Deterministic Multi-Period Production Scheduling Modell with Backlogging, Mgmt. Science, Vol. 13, 1966, 105–119zbMATHGoogle Scholar
  11. 11.
    Zangwill, W. I.: A Deterministic Multiproduct Multifacility Production and Inventory Model, Oper. Res., Vol. 14, 1966, 486zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, E. S. and Shaikh, M. A.: Optimal Production Planning by Gradient Techniques, Mgmt. Sci., Vol. 16, No. 1, 1969, 109–117Google Scholar
  13. 13.
    Kantorovich, L. V.: Mathematical Methods of Organizing and Planning Production, Leningrad, 1939, Mgmt. Sci., Vol. 6, 1958, 366–422MathSciNetGoogle Scholar
  14. 14.
    Eilon, S.: Elements of Production Planning and Control, MacMillan, New York, 1962Google Scholar
  15. 15.
    Hollier, R. H. and Moore, J. M. (Eds.): The Production System—An Efficient Integration of Resources, Proceedings of the Third Int. Conf. on Prod. Res., Massachusetts, U.S.A., August 1975Google Scholar
  16. 16.
    Hanssmann, F. and Hess, S. W.: A Linear Programming Approach to Production and Employment Scheduling, Mgmt. Techn., Vol. 1, 1960, 1MathSciNetGoogle Scholar
  17. 17.
    Hitomi, K. and Nakamura, N.: Optimal Production Planning for a Multiproduct, Multistage Production System, in VII. 1–15, 1975Google Scholar
  18. 18.
    Lawrence, K. D. and Burbridge, J. J.: A Multiple Goal Linear Programming Model for Coordinated Production and Logistics Planning, Intern. J. Prod. Res., Vol. 14, No. 2, 1976, 215–220CrossRefGoogle Scholar
  19. 19.
    Adam, D.: Produktionsplanung bei Sortenfertigung, ein Beitrag zur Theorie der Mehrproduktunternehmung, Diss., Hamburg, 1965Google Scholar
  20. 20.
    Bard, Y.: Production-Transportation-Marketing Model, IBM New York Scientific Center, Report No. 320–2933, New York, 1966Google Scholar
  21. 21.
    Pfaffenberger, U.: Probleme der Produktionsplanung bei Mehrprodukten—Mehrstufenfertigung, Diss., Tübingen, 1963Google Scholar
  22. 22.
    Wittmann, W.: Lineare Programmierung und traditionelle Produktionstheorie, Zeitschrift für handelswirtsch. Forschung, Vol. 12, 1960Google Scholar
  23. 23.
    Dinkelbach, W.: Zum Problem Der Produktionsplanung in Ein-und Mehrproduktunternehmen, Physica, WürzburgGoogle Scholar
  24. VII.1 ProduktionsplanungGoogle Scholar
  25. 24.
    Bussmann, K. F. und Mertens, P. (Eds.): Operations Research und Datenvererbeitung bei der Produktionsplanung, Poeschel, Stuttgart, 1968Google Scholar
  26. 25.
    Von Rago, Louis: Operations Research in der Produktionspraxis. Ein Handbuch für den Praktiker, Gabler, Wiesbaden, 1970Google Scholar
  27. 26.
    Stoica, M. and Scarlat, E.: Some Fuzzy Concepts in the Management of Production Systems, Modern Trends in Cybern. and Systems, Vol. 2, 1977, 175–181Google Scholar
  28. 27.
    Koopmans, T. C. (Ed.): Activity Analysis of Production and Allocation, Wiley, New York, 1951Google Scholar
  29. 28.
    Glover, F., Jones, G., Karney, D., Klingman, D., and Mote, J.: An Integrated Production, Distribution and Inventory Planning Systems, Interfaces, Vol. 9, 1979, 21–35CrossRefGoogle Scholar
  30. 29.
    Clark, A.J.: A System for the Specification and Generation of Matrices for Multi-Period Prod. Scheduling Models, in VIII.1. 1–32, 1970Google Scholar
  31. 30.
    Guenther, H. O.: Revidierende Produktionsplanung bei Sortenfertigung, in VIII.1. 1–57, 1985, 140–147Google Scholar
  32. 31.
    Scheer, A.-W.: Stand und Trends der computergestützten Produktionsplanung und -steuerung (PPS) in der Bundesrepublik Deutschland, Zeitschr. für Bertriebswirtschaft, Vol. 53, 1983, 138–155Google Scholar
  33. 32.
    Zimmermann, H.-J. and Sovereign, M.: Quantitative Models in Production Management, Prentice-Hall, Englewood Cliffs, N. J., 1972Google Scholar
  34. 33.
    Schmitt, H.: Produktionsplanung mit linearer Programmierung, Elektronische Rechenanlagen, Vol. 4, No. 3, 1962, 117–120Google Scholar
  35. 34.
    Eppen, G. D. and Martin, R. K.: Solving Multi-Item Capacitated Lot Sizing Problems Using Variable Redefinition, Oper. Res., Vol. 35, No. 6, 1987, 832–848zbMATHGoogle Scholar
  36. 35.
    Jones, W. G. and Rope, C. M.: Linear Programming Applied to Production Planning—A Case Study, Oper. Res. Quart., Vol. 15, 1964, 293–302Google Scholar
  37. 36.
    Knolmayer, G.: Computational Experiments in the Formulation of Linear Product-Mix and Non-Convex Production-Investment Models, Comp. and Oper. Res., Vol. 9, 1982, 207–219Google Scholar
  38. 37.
    Lawrence, J. R. and Flowerdew, A. D. J.: Economic Models for Production Planning, Oper. Res. Quarterly, Vol. 14, 1963, 11–30Google Scholar
  39. 38.
    Ahrsoje, G. and Svednunger, S.: A Production Planning System Based on Linear Programming, OMEGA, Vol. 1, 1973, 499–504CrossRefGoogle Scholar
  40. 39.
    Karwowski, W. and Evans, G. W.: Fuzzy Concepts in Production Management Research—A Review, Int. J. Production Research, Vol. 24, No. 1, 1986, 129–148CrossRefGoogle Scholar
  41. 40.
    Billington, P. J., Mc Clain, J. O., and Thomas, L. J.: Mathematical Programming Approaches to Capacity Constrained MRP Systems—Review, Formulation and Problem Reduction, Mgmt. Sci., Vol. 29 1983, 1126–1141zbMATHGoogle Scholar
  42. 41.
    Steinberg, E. and Napier, H. A.: Optimal Multi-Level Lot Sizing for Requirements Planning Syst., Mgmt., Sci., Vol. 26, 1980, 1258–1271zbMATHGoogle Scholar
  43. 42.
    Zahorik, A., Thomas, L. J., and Trigeiro, W. W.: Network Programming Models for Production Scheduling in Multi-Stage, Multi-Item Capacitated Systems, Mgmt. Sci., Vol. 30, 1984, 308–325zbMATHGoogle Scholar
  44. 43.
    Salveson, M. E.: On a Quantitative Method in Production Planning and Scheduling, Econometrics, Vol. 20, No. 4, 1952, 554–590zbMATHCrossRefGoogle Scholar
  45. 44.
    Holt, C. C., Modigliani, F., Muth, J. F., and Simon, H. A.: Planning Production, Inventories and Work Force, Prentice-Hall, Englewood Cliffs, New Jersey, 1960Google Scholar
  46. 45.
    Mc Clain, J. O., Thomas, L. J., and Weiss, E. N.: Efficient Solutions to a Linear Programming Model for Production Scheduling With Capacity Constraints and no Initial Stock, IIE Trans., Vol. 21, No. 2, 1989, 144–152CrossRefGoogle Scholar
  47. 46.
    Ramsey, T. E. Jr.: Integer Programming Approaches to Capacitated Concave Cost Production Planning Problems, Ph.D. Diss., Georgia Institute of Technology, 1980Google Scholar
  48. 47.
    Bowman, E. H.: Production Scheduling by the Transportation Method of Linear Programming, Operations Research, Vol. 3, No. 1, 1956Google Scholar
  49. 48.
    Scheer, A.-W.: Anforderungen und Anregungen für den Einsatz von OR-Modellen Im Produktionsbereich aus der Sicht neuer Entwick-lungen der Datenverarbeitung, in VIII.1. 1–56, 1979Google Scholar
  50. 50.
    Chow, W. S., Heragu, S. S., and Kusiak, A.: Operations Research Models and Techniques, in VII. 1–49, 135–148Google Scholar
  51. 51.
    Vollmann, T. E., Berry, W. L., and Whybark, D. C.: Manufacturing Planning and Control Systems, Richard D. Irwin, Homewood, III., 1984Google Scholar
  52. 52.
    Bahl, H. C. and Zionts, S.: A Noniterative Multiproduct Multiperiod Prod. Planning Method, Oper. Res. Letters, Vol. 1, No. 6, 1982Google Scholar
  53. 53.
    Afentakis, P. and Gavish, B.: Optimal Lot Sizing Algorithms for Complex Product Structures, Oper. Res., Vol. 34, 1986, 237–250MathSciNetzbMATHGoogle Scholar
  54. 54.
    Billington, P. J., Mc Clain, J. O., and Thomas, L. J.: Heuristics for Multilevel Lot Sizing with a Bottleneck, Mgmt. Science,Vol. 32, No. 8, 1986Google Scholar
  55. 55.
    Hax. A. C. and Candea, D.: Production and Inventory Management, Prentice Hall, Englewood Cliffs, New Jersey, 1984Google Scholar
  56. 56.
    Camp, W. E.: Determining the Production Order Quantity, Management Engineering, Vol. 2, 1922, 17–18Google Scholar
  57. 57.
    Ford, F. N., Bradbard, D. A., Ledbetter, W. N., and Cox, J. F.: Use of Operations Research in Production Management, Prod. Inv. Management, Vol. 28, No. 3, 1987, 59–63Google Scholar
  58. 58.
    Graves, S. C.: Using Lagrangian Techniques to Solve Hierarchical Prod. Planning Problems, Mgmt. Sci., Vol. 28, No. 3, 1982, 260–275zbMATHGoogle Scholar
  59. 59.
    Afentakis, P., Gavish, B., and Karmarkar, U.: Computationally Efficient Optimal Solutions to the Lot Sizing Problem in Multi-Stage Assembly Systems, Mgmt. Sci., Vol. 30, 1984, 222–239zbMATHGoogle Scholar
  60. 60.
    Pochet, Y.: Valid Inequalities and Separation for Capacitated Economic Lot Sizing, Oper. Res. Letters, Vol. 7, 1988, 109–115MathSciNetzbMATHGoogle Scholar
  61. 61.
    Pochet, Y. and Wolsey, L. A.: Lot Size Models with Backlogging—Strong Reformulation and Cutting Planes, Math. Progr., Vol. 40, 1988, 317–335MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Ho, J. K. and Mc Kenney, W. A.: Triangularity of the Basis in Linear Programs for Material Requirements Planning, Report of the College of Bus. Administration, Univ. of Tennessee, Knoxville, TN., 1988Google Scholar
  63. 63.
    Mc Kenney, W. A.: Doctoral Dissertation, Univ. of Tennessee, 1987Google Scholar
  64. 64.
    Leung, J. M. Y., Magnanti, T. L., and Vachani, R.: Facets and Algorithms for Capacitated Lot Sizing, Math. Progr. Ser. B, Vol. 45, No. 2, 1989, 331–359MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Barany, I., Van Roy, T. J., and Wolsey, L. A.: Uncapacitated Lot Sizing—The Convex Hull of Solutions, Math. Progr. Study, Vol. 22, 1984, 32–43zbMATHCrossRefGoogle Scholar
  66. 66.
    Barany, I., Van Roy, T. J., and Wolsey, L. A.: Strong Formulations for Multi-Item Capacitated Lot Sizing, Mgmt. Sci., Vol. 30, 1984, 1255–1261zbMATHGoogle Scholar
  67. 67.
    Manne, A. S.: Programming of Economic Lot Sizes, Mgmt. Science, Vol. 4, 1958, 115–135Google Scholar
  68. 68.
    Wagner, H. M. and Whitin, T. M.: Dynamic Version of the Economic Lot Size Model, Mgmt. Sci., Vol. 5, 1958, 89–96MathSciNetzbMATHGoogle Scholar
  69. 69.
    Dzielinski, B. P., Baker, C. T., and Manne, A. S.: Simulation Tests of Lot Size Programming, Mgmt. Sci., Vol. 9, 1963, 229–258Google Scholar
  70. 70.
    Dzielinski, B. P. and Gomory, R. E.: Optimal Programming of Lot Sizes, Inventory and Labor Allocations, Mgmt. Sci., Vol. 11, 1965, 874MathSciNetGoogle Scholar
  71. 71.
    Buffa, E. S. and Taubert, W. L.: Production-Inventory Systems-Planning and Control, Richard D. Irwin, Homewood, Ill., 1972Google Scholar
  72. 72.
    Wild, R.: Mass Production Management, Wiley, London, 1972Google Scholar
  73. 73.
    Mc Clain, J. O. and Thomas, L. J.: Operations Management—Production of Goods and Services, Prentice Hall, Englewood Cliffs, N. J., 1985Google Scholar
  74. 74.
    Minch, R.: A Partitioning Technique for Leontief Type Linear Programming Production Models, Operations Research Quart., 1976Google Scholar
  75. 75.
    Trigeiro, W. W., Thomas, L. J., and Mc Clain, J. O.: Capacitated Lot Sizing with Setup Times, Mgmt. Sci., Vol. 35, No. 3, 1989Google Scholar
  76. 76.
    Schwarz, L. (Ed.): Multi-Level Production/Inventory Systems—Theory and Practice, North-Holland, New York, 1981zbMATHGoogle Scholar
  77. 77.
    Kusiak, A. (Ed.): Modern Production Management Systems, North-Holland, Amsterdam, 1987Google Scholar
  78. 78.
    Bastian, M.: Lot-Trees—A Unifying View and Efficient Implementation of Forward Procedures for the Dynamic Lot-Size Problem, Comput. Oper. Res., Vol. 17, No. 3, 255–263, 1990MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Chand, S. and Morton, T. E.: Minimal Forecast Horizon Procedures for Dynamic Lot Size Models, Nay. Res. Log. Quart., Vol. 33, 1986, 111–122MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Fleischmann, B.: The Discrete Lot Sizing and Scheduling Problem, Europ. J. Oper. Res., Vol. 46, No. 3, 1990, 337–348MathSciNetCrossRefGoogle Scholar
  81. 81.
    Miller, T. and Liberatore, M. J.: Implementing Integrated Production and Distribution Planning Systems, Intern. J. Oper. and Prod. Mgmt. (UK), Vol. 8, No. 7, 1988, 31–41CrossRefGoogle Scholar
  82. 82.
    Biethahn, J.: Praktische Erfahrungen bei der Anwendnung der linearen Optimierung auf Mehrproduktunternehmen mit Kuppelproduktion, in VIII.1. 1–146, 1974Google Scholar
  83. 83.
    Zoller, K. and Robrade, A.: Efficient Heuristics for Dynamic Lot Sizing, Int. J. Prod. Res., Vol. 26, 1988, 249–265zbMATHCrossRefGoogle Scholar
  84. 84.
    Ritchie, E. and Tasdo, A. K.: Review of Lot-Sizing Techniques for Deterministic Time-Varying Demand, Prod. Inv. Mgmt., Vol. 27, 1986, 65–97Google Scholar

VII.2 Fertigungsplanung

  1. 1.
    Muth, J. F. and Thompson, G. L. (Eds.): Industrial Scheduling, Prentice Hall, Eglewood Cliffs, N.J., 1963Google Scholar
  2. 2.
    Obrien, J. J.: Scheduling Handbook, McGraw-Hill, New York, 1969Google Scholar
  3. 3.
    Coffman, E. G. Jr. (Ed.): Computer and Job Shop Scheduling Theory, Wiley, New York, 1976zbMATHGoogle Scholar
  4. 4.
    Kompass, E. and Williams, T. J. (Ed.): On-Line Production Scheduling and Plant-Wide Control, Proc. of the 8th Annual Adv. Contr. Conf., West Lafayette, Indiana 1982, Control Eng., Barrington, 1982Google Scholar
  5. 5.
    Tang, J. C. S. and Quah, T. C.: Comparsion of Solution Techniques for the Production Scheduling Problem, Int. J. Policy Inf., Vol. 8, No. 1, 1984Google Scholar
  6. 6.
    Ballakur, A. and Steudel, H. J.: Integration of Job Shop Control Syst.—A State-of-the-Art Review, J. Manuf. Syst., Vol. 3, 1984Google Scholar
  7. 7.
    Baker, K. R.: Sequencing Rules and Due-Date Assignments in a Job Shop, Mgmt. Sci., Vol. 30, No. 9, 1984Google Scholar
  8. 8.
    Dumitru, V. and Luban, F.: Membership Functions, Some Mathematical Programming Models and Production Scheduling, Fuzzy Sets and Systems, Vol. 8, No. 1, 1982Google Scholar
  9. 9.
    Mc Hugh, J. A. M.: Hu’s Precedence Tree Scheduling Algorithm—A Simple Proof, Naval Res. Logist. Quart., Vol. 31, No. 3, 1984Google Scholar
  10. 10.
    Kiran, A. S. and Smith, M. L.: Simulation Studies in Job Shop Scheduling—I: A Survey, Comp. Ind. Eng., Vol. 8, No. 2, 1984Google Scholar
  11. 11.
    Kiran, A. S. and Smith, M. L.: Simulation Studies in Job Shop Scheduling—II: Performance of Priority Rules, Vol. 8, No. 2, 1984Google Scholar
  12. 12.
    Kantsedal, S. A.: Decomposition Approach to the Solution of Large-Scale Scheduling Problems, Autom. Remote Control, Vol. 44, 1983Google Scholar
  13. 13.
    Adiri, I. and Amit, N.: Route-Dependent Open-Shop Scheduling, IIE Trans., Vol. 15, No. 3, 1983Google Scholar
  14. 14.
    Glacebrook, K. D.: On Stochastic Scheduling Problems with Due Dates, Int. J. Syst. Sci., Vol. 24, No. 11, 1983Google Scholar
  15. 15.
    Panayiotopoulos, J.-C.: Generalized Multi-Item Lot Size Scheduling, Eur. J. Oper. Res., Vol. 14, No. 1, 1983Google Scholar
  16. 16.
    Bakshi, M. S. and Arora, S. R.: The Sequencing Problem, Management Science. Vol. 16. No. 4, 1969, 247–263CrossRefGoogle Scholar
  17. 17.
    Dannenbring, D. G.: An Evaluation of Flow Shop Sequencing Heuristics, Mgmt. Sci., Vol. 23, 1977, 1174–1182zbMATHGoogle Scholar
  18. 18.
    Lageweg, B. J., Lenstra, J. K., and Rinnooy Kan, H. G.: Job-Shop Scheduling by Implicit Enumeration, Mgmt. Sci., Vol. 24. No. 4, 1977, 441–450MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hoss, K.: Fertigungsplanung mittels operationsanalytischer Methoden, Physica Verlag, Würzburg, 1965Google Scholar
  20. 20.
    Baker, K. R.: Intr. to Sequencing and Schedul., Wiley, New York, 1975Google Scholar
  21. 21.
    Müller-Merbach, H: Optimale Reihenfolgen, Springer, Berlin, 1970CrossRefGoogle Scholar
  22. 22.
    Charlton, J. M. and Death, C. C.: A Generalized Machine-Scheduling Alogrithm, Operations Research Quarterly, Vol. 21, No. 1, 1970Google Scholar
  23. 23.
    Haase, L.: Näherungsverfahren Zum Bestimmen kostenguenstiger Reihenfolgen von Fertigungslosen bei gleicher technologischer organisatorischer Folge, Fertigungstechnik und Betrieb, Vol. 25, No. 1, 1975, 27–32MathSciNetGoogle Scholar
  24. 24.
    Arkin, E. M. and Silverberg, E. B.: Scheduling Jobs with Fixed Start and End Times, Discrete Appl. Math., Vol. 18, No. 1, 1987, 1–18MathSciNetzbMATHGoogle Scholar
  25. 25.
    Prabhakar, T.: A Production Scheduling Problem with Sequencing Considerations, Mgmt. Sci., Vol. 21, No. 1, 1974, 34–42zbMATHGoogle Scholar
  26. 26.
    Sielken, R. L.: Sequencing with Setup Costs by Zero-One Mixed-Integer Linear Programming, AIIE Trans., Vol. 8, No. 3, 1976, 369–371CrossRefGoogle Scholar
  27. 27.
    Taha, H.: Sequencing by Implicit Ranking and Zero-One Polynomial Programming, AIIE Transactions, Vol. 3, No. 4, 1971, 299–301CrossRefGoogle Scholar
  28. 28.
    Geoffrion, A. M. and Graves, G. W.: Scheduling Parallel Production Lines with Changeover Costs—Practical Appl. of a Quadratic Assignment/LP Appr., Res., Vol. 24, No. 4, 1976, 595–610zbMATHGoogle Scholar
  29. 29.
    Bruvold. N. T. and Evans, J. R.: Flexible Mixed-Integer Programming, Formulations for Production Scheduling Problems, IIE Trans., Vol. 17, No. 1, 1985, 2–7CrossRefGoogle Scholar
  30. 30.
    Szwarc, W.: Mathematical Aspects of the 3 x n Jobshop Sequencing Problem, Nay. Res. Logist. Quart., Vol. 21, 1974, 145–153MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Johanson, S. M.: Optimal Two and Three Stage Prod. Scheduling with Set-up Times Included, Nar. Res. Logist. Quart., Vol. 14, 1954, 61–68CrossRefGoogle Scholar
  32. 32.
    Garey, M. R., Johnson, D. S., and Sethi, R.: The Complexity of Flowshop and Jobshop Scheduling, Math. of Oper. Res., Vol. 1, 1976, 117–129MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Pinedo, M. L.: Minimizing the Makespan in a Stochastic Flowshop, Oper. Res., Vol. 30, 1982, 148–162MathSciNetzbMATHGoogle Scholar
  34. 34.
    Cunningham, A. A. and Dutta, S. K.: Scheduling Jobs with Exponentially Distributed Processing Times on Two Machines of a Flowshop, Naval Res. Logist. Quart., Vol. 23, 1973, 69–81MathSciNetCrossRefGoogle Scholar
  35. 35.
    Frostig, E. and Adiri, I.: Three-Machine Flowshop Stochastic Scheduling to Minimize Distribution of Scheduling Length, Nay. Res. Logist. Quart., Vol. 32, 1985, 179–183MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Seitz, R.: Ermittlung kuerzester Durchlaufzeiten auf Fertigungsstrassen, Unternehmensforschung, Band 6, Heft 4, 1962Google Scholar
  37. 37.
    Akers, S. B. Jr. and Friedman, J.: A Non-Numerical Approach to Production Scheduling, Oper. Res., Vol. 3, No. 4, 1955, 429–442Google Scholar
  38. 38.
    Heller, J.: Combinatorial, Probabilistic and Statistical Aspects of an M x J Scheduling Problem, Report NYO-2540, AEC Computing and Applied Mathematics Center, Inst. of Math. Sciences, New York Univ., New York, 1959Google Scholar
  39. 39.
    Heller, J. and Logemann, G.: An Algorithm for the Construction and Evaluation of Feasible Schedules, Mgmt. Sci., Vol. 8, No. 2, 1962Google Scholar
  40. 40.
    Giffler, B. and Thompson, G.: Algorithm for Solving Production Scheduling Problems, and Journal of the Oper. Res. Soc. of America, Vol. 8, No. 4, 1960Google Scholar
  41. 41.
    Conway, R. W., Maxwell, W. L., and Miller, L. W.: Theory of Scheduling, Addison-Wesley, Reading, Mass., 1967zbMATHGoogle Scholar
  42. 42.
    Rinnooy Kan, A. H. G.: Machine Scheduling Problems—Classification, Complexity and Computations, Nijhoff, the Hague, 1976Google Scholar
  43. 43.
    Mc Mahon, G. and Florian, M.: On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness, Oper. Res., Vol. 23, 1975, 475Google Scholar
  44. 44.
    Dessouky, M. L. and Margenthaler, C. R.: The One-Machine Sequencing Problem with Early Starts and Due Dates, AIIE Trans., Vol. 4, 1972, 214–222CrossRefGoogle Scholar
  45. 45.
    Baker, K. R. and Su, Z.-S.: Sequencing with Due-Dates and Early Start Times to Minimize Maximum Tardiness, Nay. Res. Logist. Quart., Vol. 21, 1974, 171–176MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Smith, W. E.: Various Optimizers for Single-Stage Production, Naval Res. Logist. Quart., Vol. 3, 1956, 59–66CrossRefGoogle Scholar
  47. 47.
    Lageweg, B., Lenstra, J. K., and Rinnooy Kan, A. H. G.: Minimizing Maximum Lateness on One Machine—Algorithms and Applications, in VIII.1–6–5, 1979Google Scholar
  48. 48.
    Gere, W. S.: Heuristics in Job Scheduling, Mgmt. Sci., Vol. 13, 1966, 167–190Google Scholar
  49. 49.
    Balas, E.: Teoria grafurilor si incarcarea optima a utilajelor la fabricile de mobila (Graph Theory and Optimal Machine Loading in the Manufacturing of Furniture), Proc. Scientific Session of the Forestry Research Institute, Bucharest, June 1966Google Scholar
  50. 50.
    Nemeti, L.: Das Reihenfolgeproblem in der Fertigungsprogrammierung und Linearplanung mit logischen Bedingungen, Mathematica, Vol. 6, No. 29, 1964, 87–92Google Scholar
  51. 51.
    Dantzig, G. B.: A Machine-Job Scheduling Model, Mgmt. Sci., Vol. 6, 1960, 191–196Google Scholar
  52. 52.
    Bowman, F. H.: The Schedule-Sequencing Problem, Operations Research, Vol. 7, 1959, 621–624CrossRefGoogle Scholar
  53. 53.
    Smith, R. D. and Dudek, R. A.: A General Algorithm for Solution of the n-Job, M-Machine Sequencing Problem of the Flow Shop, Oper. Res., Vol. 15, No. 1, 1967, 71–82zbMATHGoogle Scholar
  54. 54.
    Rinnooy Kan, A. H. G.: Machine Scheduling Problems, H. E. Stenfert Kroese B. V., Leiden, Netherlands, 1976Google Scholar
  55. 55.
    Piehler, J.: Ein Beitrag Zum Reihenfolgeproblem, Unternehmensforschung, Vol. 4, 1960, 138–142CrossRefGoogle Scholar
  56. 56.
    Liesegang, G. und Schirner, A.: Heuristische Verfahren Zur Maschinenbelegungsplanung bei Reihenfertigung, Zeitschr, für Oper. Res., Vol. 19, 1975, 195–211zbMATHGoogle Scholar
  57. 57.
    Lomnicki, Z. A.: A Branch-and-Bound Algorithm for the Exact Solution of the Three-Machine Scheduling Problem, Oper. Res. Quart., Vol. 16, 1965, 89–100Google Scholar
  58. 58.
    Ignall, E. J. and Schrage, L.: Application of the Branch-and-Bound Techniques to Some Flow Shop Scheduling Problems, Oper. Res., Vol. 13, No. 3, 1965, 400–412MathSciNetGoogle Scholar
  59. 59.
    Charlton, J. M. and Death, C. C.: A Method of Solution for General Machine-Scheduling Problems, Oper. Res., Vol. 18, No. 4, 1970, 689–707zbMATHGoogle Scholar
  60. 60.
    Zangwill, W. I.: A Deterministic Multi-Period Production Scheduling Modell with Backlogging, Mgmt. Sci., Vol. 13, 1966, 105–119zbMATHGoogle Scholar
  61. 61.
    Pierce, J. F.: Some Large Scale Production Scheduling Problems in the Paper Industry, Prentice-Hall, Englewood Cliffs, N. J., 1964Google Scholar
  62. 62.
    Giglio, R. J. and Wagner, H. M.: Approximate Solutions to the Three-Machine Scheduling Problem, Oper. Res., Vol. 12, 1964, 306–324Google Scholar
  63. 63.
    Palmer, D. S.: Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time, Oper. Res. Quart., Vol. 16, 101–107, 1965Google Scholar
  64. 64.
    Wagner, H. M.: An Integer Linear Programming Model for Machine Shop Scheduling, Naval Res. Log. Quart., Vol. 6, No. 2, 1959, 131–140CrossRefGoogle Scholar
  65. 65.
    Lenstra, J. K., Rinnooy Kan, A. H. G. and Bruckner, P.: Complexity of Machine Schedul. Probl., Ann. Discr. Math., Vol. 1, 1977, 342–362Google Scholar
  66. 66.
    Lenstra, J. K.: Sequencing by Enumerative Methods, Mathematical Centre Tracts 69, Mathematisch Centrum, Amsterdam, 1977Google Scholar
  67. 67.
    Szwarc, W.: On Some Sequencing Problems, Nay. Res. Logist. Quart., Vol. 15, 1968, 127–155zbMATHGoogle Scholar
  68. 68.
    Arthanari, T. S. and Mukhopadhyay, A. C.: A Note on a Paper by W. Szwarc, Nay. Res. Log. Quart., Vol. 15, 1971, 135–138CrossRefGoogle Scholar
  69. 69.
    Raghavachari, M.: On an Approximate Solution to the 3-Machine Sequencing Problem, Journal of Math. Sciences, Vol. 4, 1969, 47–50MathSciNetGoogle Scholar
  70. 70.
    Mitten, J. G.: Sequencing n Jobs of Two Machines with Arbitrary Time Lags, Mgmt. Sci., Vol. 5, 1959, 293–298MathSciNetzbMATHGoogle Scholar
  71. 71.
    Szwarc, W.: Solutiion of the Akers-Friedman Scheduling Problem, Oper. Res., Vol. 8, No. 6, 1960, 782–788zbMATHGoogle Scholar
  72. 72.
    Raimond, J.-F.: An Algorithm for the Exact Solution of the Machine Scheduling Problem, IBM New York Scientific Center, Report No. 320–2930, March 1986Google Scholar
  73. 73.
    Hardgrave, W. W. and Nemhauser, G. L.: A Geometric Model and A Graphical Algor. for a Sequencing Probl., Vol. 11, No. 6, 1963, 889–900zbMATHGoogle Scholar
  74. 74.
    Florian, M., Trepant, P. and Mc Mahon, G.: An Implicit Enumeratioin Algorithm for the Machine Sequencing Problem, Mgmt. Sci., Vol. 17, No. 12, 1971, 782–792Google Scholar
  75. 75.
    Panwalkar, S. S., Dudek, R. A., and Smith, L. M.: Sequencing Research and the Industrial Scheduling Problem, Proc. of Symposium on Theory of Scheduling and its Applications, Raleigh, North Carolina, 1972, Springer, Berlin, 1973Google Scholar
  76. 76.
    Nabeshima, I.: On the Bound of Makespans and its Applications in M Machine Scheduling Problem, Journal of the Oper. Res. Soc. of Japan, Vol. 9, No. 3 and No. 4, 98–136Google Scholar
  77. 77.
    Mc Mahon, G. B. and Burton, P. G.: Flow-Shop Scheduling with the Branch-and-Bound Method, Oper. Res., Vol. 15, No. 3, 1967, 473–481Google Scholar
  78. 78.
    Page, E. S.: An Approach to the Scheduling of Jobs on Machines, J. Royal Statistical Soc., Series B, Vol. 23, No. 2, 1961, 484–492MathSciNetGoogle Scholar
  79. 79.
    Brooks, G. H. and White, C. R.: An Algorithm for Finding Optimal or Near Optimal Solutions to the Production Scheduling Problem, J. of Ind. Eng., Vol. 16, No. 1, 1965, 34–40Google Scholar
  80. 80.
    Lasdon, L. S. and Terjung, R. C.: An Efficient Algorithm for Multi-Item Scheduling, Oper. Res., Vol. 19, No. 4, 1971, 946–969MathSciNetzbMATHGoogle Scholar
  81. 81.
    Madigan, J. G.: Scheduling a Multi-Product Single Machine System for an Infinite Planning Period, Mgmt. Sci., Vol. 14, No. 11, 1968, 713–719Google Scholar
  82. 82.
    Dudek, R. A. and Teuton, O. F. Jr.: Development of M-Stage Decision Rule for Scheduling n Jobs Through m Machines, Oper. Res., Vol. 12, 1964, 471–497zbMATHGoogle Scholar
  83. 83.
    Story, A. E. and Wagner, H. M.: Computational Experience with Integer Programming for Job-Shop Scheduling, in VII. 2–01, 1963Google Scholar
  84. 84.
    Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G.: Recent Developments in Deterministic Scheduling and Sequencing, in VII. 2–85, 1982, 35–73Google Scholar
  85. 85.
    Dempster, M. A. H. et al. (Eds.): Derterministic and Stochastic Scheduling, D. Reidel Publ. Company, Boston, Mass., 1982Google Scholar
  86. 86.
    Mahendra, S. B. and Arora, S. R.: The Sequencing Problem, Management Science, Vol. 16, 1969, B247Google Scholar
  87. 87.
    Spinner, A. H.: Sequencing Theory—Development the Date, Naval Res. Log. Quarterly, Vol. 15, 1968, 319–330Google Scholar
  88. 88.
    Rochette, R.: A Statistical Analysis of a Job Shop Scheduling Problem, Unpubl. Ph.D. Diss., Dept. of Ind. Eng. and Oper. Res., Univ. of Massachusetts, U.S.A., 1975Google Scholar
  89. 89.
    Eilon, S. and Hodgson, R. M.: Job Shop Scheduling with Due Dates, Int. Journal of Prod. Res., Vol. 6, 1967, 1CrossRefGoogle Scholar
  90. 90.
    Littger, K.: A New Approach for the Optimum Solution of the M by J Production Scheduling Problem, in VII. 1–15, 1975Google Scholar
  91. 91.
    Littger, K.: A New Approach for the Optimum Solution of the M by J Production Scheduling Problem, Int. J. Prod. Res., Vol. 15, 1976Google Scholar
  92. 92.
    Littger, K.: Bearbeitung komplexer Reihenfolgeprobleme mit elektronischen Rechenanlagen, IBM Fachbibliotheck, Form-No. 78100, 1963Google Scholar
  93. 93.
    Holloway, C. A. and Nelson, R. T.: Job Shop Scheduling with Due Dates and Overtime Capacity, Mgmt. Sci., Vol. 21, 1974, 68zbMATHGoogle Scholar
  94. 94.
    Eilon, S. and Chowdhury, I. G.: Due Dates in Job Shop Scheduling, in VII. 1–15, 1975Google Scholar
  95. 95.
    Abernathy, W. J.: Subjective Estimates and Scheduling Decisions, Mgmt. Sci., Series B, Vol. 18, No. 2, 1971, 80–88Google Scholar
  96. 96.
    Ackermann, S. S.: Even-Flow, A Scheduling Method for Reducing Lateness in Job Shops, Management Techn., Vol. 3, No. 1, 1963, 20–32Google Scholar
  97. 97.
    Adam, D.: Simultane Ablauf-und Programmplanung bei Sortenfertigung mit ganzzahliger linearer Programmierung, Zeitschr. für Betriebswirtschaft, Vol. 33, No. 4, 1963, 233–245MathSciNetGoogle Scholar
  98. 98.
    Akers, S. B.: A Graphical Approach to Production Scheduling Problems, Oper. Res., Vol. 4, 1956, 244–245Google Scholar
  99. 99.
    Algan, M.: Reihenfolgeprobleme und Graphentheorie, Unternehmensforschung, Vol. 8, No. 2, 1964, 53–64zbMATHCrossRefGoogle Scholar
  100. 100.
    Littger, K.: Bearbeitung komplexer Reihenfolgeprobleme mit elektronischen Rechenanlagen, Elektronische Rechenanlagen, Vol. 6, No. 4, 1964, 184–197zbMATHGoogle Scholar
  101. 101.
    Ashour, S.: An Experimental Investigation and Comparative Evaluation of Flow-Shop Scheduling Techniques, Oper. Res., Vol. 18, 1970, 541–549zbMATHGoogle Scholar
  102. 102.
    Balas, E.: Machine Sequencing—Disjunctive Graphs and Degree-Constrained Subgroups, Nay. Res. Logist. Quart., Vol. 17, No. 1, 1970, 1–10MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Banerjee, B. P.: Single Facility Sequencing with Random Execution Times, Operations Research, Vol. 13, No, 3, 1965, 358–364Google Scholar
  104. 104.
    Lightenberg, E.: Minimal Cost Sequencing of N Grouped and Ordered Jobs on M Machines, J. of Ind. Eng., Vol. 17, No. 4, 1966Google Scholar
  105. 105.
    Müller-Merbach, H.: Die Bestimmung Optimaler Losgrößen bei Mehrproduktfertigung, TH Darmstadt, Diss., 1963Google Scholar
  106. 106.
    Müller-Merbach, H.: Optimale Losgrößen bei mehrstufiger Fertigung, Ablauf-und Plannungsforsch., Vol. 4, No. 4, 1963, 264–274Google Scholar
  107. 107.
    Müller-Merbach, H.: Ein Verfahren zur Lösung von Reihenfolgeproblemen der industriellen Fertigung, Zeitschr. für wirtsch. Fertigung, Vol. 61, No. 3. 1966, 147–152Google Scholar
  108. 108.
    Beenhakker, H. L.: Development of Alternative Criteria of Optimality in the Machine Sequencing Problem, Purdue Univ., Ph.D. Thesis, 1963Google Scholar
  109. 109.
    Bellman, R.: Some Mathematical Aspects of Scheduling Theory, J. SIAM, Vol. 4, No. 3, 1956, 168–205zbMATHGoogle Scholar
  110. 110.
    Gavett, J. W.: Three Heuristic Rules for Sequencing Jobs to a Single Production Facility, Mgmt. Sci., Vol. II, No. 8, 1965, B166–B176Google Scholar
  111. 111.
    Lockett, A. G. and Muhlemann, A. P.: A Scheduling Problem Involving Sequence Dependent Changeover Times, Oper. Res., Vol. 20, No. 4, 1972, 895–902Google Scholar
  112. 112.
    Staehly, P.: Kurzfristige Fabrikationsplanung in der industriellen Werkstattfertigung, Physica, WürzburgGoogle Scholar
  113. 113.
    Pressmar, D.. B.: Formulierung von Reihenfolgebedingungen in LP-Produktionsplanungsmodellen, in VIII.1. 1–57, 1985Google Scholar
  114. 114.
    Huckert, K.: Ein nicht-lineares Optimierungsmodell für das Job-Shop Problem, in VIII.1. 1–58, 1980Google Scholar
  115. 115.
    Prade, H.: Using Fuzzy-Set Theory in a Scheduling Problem—A Case Study, J. of Fuzzy Sets and Systems, Vol. 2, No. 2, 1979, 153–165zbMATHCrossRefGoogle Scholar
  116. 116.
    Bank, B.: Branch-and-Bound-Algorithmen für zwei Reihenfolgeprobleme, Math. Operationsforsch. und Statistik, Vol. 1, 1970, 217–228MathSciNetCrossRefGoogle Scholar
  117. 117.
    Seiffart, E.: Verbesserung des Lösungsweges eines Reihenfolgeproblems, Fertigungstechnik und Betrieb, Vol. 13, 1963, 570–572Google Scholar
  118. 118.
    Seiffart, E.: Exakte und approximative Lösungsmöglichkeiten von Reihenfolgeproblemen, Elektron. Informationsverarb. Kybern., Vol. 2, 1966, 123–150zbMATHGoogle Scholar
  119. 119.
    Teruo, J.: Algorithmen für das klassische Maschinenbelegungsproblem, Math. Operationsforschung und Statistik, Vol. 3, 1972, 195–201CrossRefGoogle Scholar
  120. 120.
    Gupta, J. N. D. and Gupta, S. K.: Single Facility Scheduling with Nonlinear Processing Times, Comput. Ind. Eng., Vol. 14, No. 4, 1988, 387–393CrossRefGoogle Scholar
  121. 121.
    Trappey, J.-F. C., Liu, C. R. and Chang, T. C.: Fuzzy Non-Linear Programming—Theory and Appl. in Manuf., Int. J. Prod. Res., Vol. 26, No. 5, 1988, 975–985zbMATHCrossRefGoogle Scholar
  122. 122.
    Adams, J., Balas, E., and Zawack, D.: Shifting Bottleneck Procedure for Jop Shop Sched., Mgmt. Sci., Vol. 34, No. 3, 1988, 391–401MathSciNetzbMATHGoogle Scholar
  123. 166.
    VII.2 FertigungsplanungGoogle Scholar
  124. 123.
    Smith-Daniels, V. L., and Ritzman, L. P.: Model for Lot Sizing and Sequencing in Process Industries, Int. J. Prod. Res., Vol. 26, No. 4, 1988, 647–674CrossRefGoogle Scholar
  125. 124.
    Gupta, J. N. D.: An Improved Combinatorial Algorithm for the Flowshop Scheduling Problem, Oper. Res., Vol. 20, 1971, 1753–1758Google Scholar
  126. 125.
    Gupta, J. N. D.: Optimal Scheduling in a Multi-Stage Flowshop, AIIE Trans., Vol. 4, 1972, 238–243CrossRefGoogle Scholar
  127. 126.
    Schild, A. Fredman, I. J.: Scheduling Tasks with Dealines and Non-Linear Loss Functions, Mgmt Sci., Vol. 9, 1962, 73–81CrossRefGoogle Scholar
  128. 127.
    Beletskii, S. A.: Minimizing the Maximum Penalty on Permutations, Cybernetics, Vol. 22, No. 1, 1986, 82–86Google Scholar
  129. 128.
    Lawler, E. L.: Optimal Sequencing of a Single Machine Subject to Precedence Constr., Mgmt. Sci., Vol. 19, No. 5, 1973, 544–546zbMATHGoogle Scholar
  130. 129.
    Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G.: Optimization and Approximation in Deterministic Sequencing and Sched.—A Survey, Ann. of Discr. Math., Vol. 5, 1979, 287–326zbMATHCrossRefGoogle Scholar
  131. 130.
    Krone, M. J.: Heuristic Programming Applied to Scheduling Problems, Ph.D. Diss., Princeton Univ., 1970Google Scholar
  132. 131.
    Krone, M. J. and Steiglitz, K.: Heuristic-Programming Solution of a Flowshop Scheduling Problem, Oper. Res., Vol. 22, No. 3, 1974, 629–638zbMATHGoogle Scholar
  133. 132.
    Lenstra, J. K. and Rinnooy Kan, A. H. G.: Complexity of Scheduling under Precedence Constraints, Oper. Res., Vol. 26, 1978, 22–35zbMATHGoogle Scholar
  134. 133.
    Day, J. E. and Hottenstein, M. P.: Review of Sequencing Problems, Nay. Res. Logist. Quart., Vol. 17, No. 1, 1970, 11–40zbMATHCrossRefGoogle Scholar
  135. 134.
    Szwarc, W.: Elimination Methods in the m x n Sequencing Problem, Nay. Res. Logist. Quart., Vol. 18, 1971, 295–305MathSciNetzbMATHCrossRefGoogle Scholar
  136. 135.
    Szwarc, W.: Optimal Elimination Methods in the m x n Sequencing Problem, Operations Research, Vol. 21, 1973, 1250–1259MathSciNetzbMATHCrossRefGoogle Scholar
  137. 136.
    Szwarc, W.: Dominance Conditions in the Three-Machine Flowshop Problem, Operations Research, Vol. 26, 1978, 203–206MathSciNetzbMATHCrossRefGoogle Scholar
  138. 137.
    Achuthan, N. R.: Flow-Shop Scheduling Problems, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1980Google Scholar
  139. 138.
    Dar-El, E. M., and Wysk, R. A.: Job Shop Scheduling—Systematic Approach, J. of Manuf. Systems, Vol. 1, NO. 1, 1986, 77–88CrossRefGoogle Scholar
  140. 139.
    Panwalkar, S. S., Smith, M. L., and Wollam, C. R.: Counterexamples to Optimal Permutation Schedules for Certain Flowshop Problems, Nay. Res. Log. Quart., Vol. 28, 1981, 339–340zbMATHCrossRefGoogle Scholar
  141. 140.
    Guignard, M., Lee, H., and Spielberg, K.: Solving Makespan Minimization Problems with Lagrangean Decomposition, Report 89–02–04, The Warthon School, Univ. of Pennsylvania, Philadelphia, 1989Google Scholar
  142. 141.
    Mc Naughton, R.: Scheduling with Deadlines and Loss Functions, Mgmt. Sci., Vol. 6, 1959, 1–12Google Scholar
  143. 142.
    Gupta, J. N. D.: M-Stage Scheduling Problem—A Critical Appraisal, Int. J. of Prod. Res., Vol. 9, No. 2, 1971, 267–281CrossRefGoogle Scholar
  144. 143.
    Graves, S. C.: Review of Production Scheduling, Oper. Res., Vol. 29, No. 4, 1981, 646–675MathSciNetzbMATHGoogle Scholar
  145. 144.
    Gonzalez, T. and Sahni, S.: Open Shop Scheduling to Minimize Finish Time, J. ACM, Vol. 23, 1976, 665–679MathSciNetzbMATHCrossRefGoogle Scholar
  146. 145.
    Gonzalez, T. and Sahni, S.: Flowshop and Jobshop Schedules—Complexity and Approximation, Oper. Res., Vol. 26, 1978, 36–52MathSciNetzbMATHGoogle Scholar
  147. 146.
    Gonzalez, T. and Sahni, S.: Preemptive Scheduling of Uniform Processor Systems, J. ACM, Vol. 25, 1978, 92–101MathSciNetzbMATHCrossRefGoogle Scholar
  148. 147.
    Eastman, W. L., Even, S., and Isaacs, I. M.: Bounds for the Optimal Scheduling of n Jobs on m Processors, Mgmt. Sci., Vol. 11, 1964, 268–279MathSciNetGoogle Scholar
  149. 148.
    Emmons, H.: One-Machine and Sequencing to Minimize Certian Functions of Job Tardiness, Oper. Res., Vol. 17, 1969, 701–715MathSciNetzbMATHGoogle Scholar
  150. 149.
    Garey, M. R., Johnson, D. S., Simons, B. B., and Tarjan, R. E.: Scheduling Unit-Time Tasks with Arbitrary Release Times and Deadlines, SIAM J. Comput., Vol. 10, 1981, 256–269MathSciNetzbMATHGoogle Scholar
  151. 150.
    Panwalkar, S. S. and Iskander, W.: A Survey of Scheduling Rules, Oper. Res., Vol. 25, 1977, 45–61MathSciNetzbMATHGoogle Scholar
  152. 151.
    Papadimitriou, C. H. and Kannelakis, P. C.: Flowshop Scheduling with Limited Temporary Storage, J. ACM., Vol. 27, 1980, 533–549zbMATHCrossRefGoogle Scholar
  153. 152.
    Reddi, S. S. and Ramamoorthy, C. V.: On the Flow-Shop and Sequencing Problem with no Wait in Process, Oper. Res. Quart., Vol. 23, 1972, 323–331zbMATHGoogle Scholar
  154. 153.
    Lehtonen, T.: Scheduling Jobs with Exponential Processing Times on Parallel Machines, J. Appl. Probab., Vol. 25, No. 4, 1988, 752–762MathSciNetzbMATHCrossRefGoogle Scholar
  155. 154.
    Weber, R. R.: Scheduling Jobs with Stochastic Processing Requirements on Parallel Machines to Minimizes Makespan or Flowtime, J. Appl. Probab., Vol. 19, 1982, 167–182MathSciNetzbMATHCrossRefGoogle Scholar
  156. 155.
    Weiss, G. and Pinedo, M. L.: Scheduling Tasks with Exponential Service Times on Non-Identical Processors to Minimize Various Cost Functions, J. Appl. Probab., Vol. 17, 1980, 187–202MathSciNetzbMATHCrossRefGoogle Scholar
  157. 156.
    Pinedo, M. L. and Weiss, G.: Scheduling Jobs with Exponentially Distributed Processing Times and Intree Precedence Constraints on Two Parallel Machines, Oper. Res., Vol. 33, 1985, 1381 1388Google Scholar
  158. 157.
    Weber, R. R., Varaiya, P. P., and Walrand, J.: Scheduling Jobs with Stochastically Ordered Processing Times on Parallel Machines to Minimize Expected Flowtime, J. Appl. Prob., Vol. 23, 1986, 841–847MathSciNetzbMATHCrossRefGoogle Scholar
  159. 158.
    Sisson, R. L.: Methods of Sequencing in Job Shops—a Review, Oper. Res., Vol. 7, No. 1, 1959, 10–29MathSciNetGoogle Scholar
  160. 159.
    Sisson, R. L.: Sequencing Theory, in VIII.1. 1–13, 1961, 293–326MathSciNetGoogle Scholar
  161. 160.
    Florian, M., Tilquin, C., and Tilquin, G.: An Implicit Enumeration Algorithm for Complex Scheduling Problems, Int. J. Prod. Res., Vol. 12, 1975, 25–40CrossRefGoogle Scholar
  162. 161.
    Teruo, J. and Ullrich, M.: Dynamische Optimierung bei Reihenfolgeproblemen, Wiss. Z. TU Dresden, Vol. 22, H. 3, 1973Google Scholar
  163. 162.
    Seiffart, E.: Reihenfolgeprobleme mit gleichen Maschinen-and Bearbeitungsfolgen, Habilitation, TH Magdeburg, 1969Google Scholar
  164. 163.
    Ullman, J. D.: NP-Complete Scheduling Problems, J. Comp. Syst. Sci., Vol. 10, 1975, 384–393MathSciNetzbMATHCrossRefGoogle Scholar
  165. 164.
    Stafford, E. F.: On the Development of a Mixed-Integer Linear Programming Model for the Flowshop Sequencing Problem, J. Oper. Res. Soc. (UK), Vol. 39, No. 12, 1988, 1163–1174zbMATHGoogle Scholar
  166. 165.
    Selim, S. Z. and Al-Turki, U. M.: A New Heuristic Algorithm for the Flowshop Problem, in VII.i-77, 1987, 91–96Google Scholar
  167. 166.
    Al-Turki, U. M.: A New Heuristic Algorithm for the n-Job, m-Machine Flowshop Scheduling Problem, Master’s Thesis, Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia, 1986Google Scholar
  168. 167.
    Campbell, H. G., Dudek, R. A., and Smith, M. L.: A Heuristic Algorithm for the n-Job, m-Machine Sequencing Problem, Mgmt. Sci., Ser. B, Vol. 16, No. 10, 1970, 630–637Google Scholar
  169. 168.
    Park, Y. B.: A Simulation Study and Analysis for Evaluation of Performance-Effectiveness of Flowshop Sequencing Heuristics—A Static and Dynamic Flowshop Model, Master’s Thesis, Pennsylvania State Univ., 1981Google Scholar
  170. 169.
    Setiaputra, W.: a Survey of Flowshop Permutation Scheduling Techniques and an Evaluation of Heuristic Solution Methods, Master’s Thesis, Pennsylvania State Univ., 1980Google Scholar
  171. 170.
    Blazewicz, J.: Selected Topics in Scheduling Theory, in VII. 19–169, 1987, 1–60MathSciNetGoogle Scholar
  172. 171.
    Blazewicz, J., Lenstra, J. K., and Rinooy Kan, A. R. G.: Scheduling Subject to Resource Constraints—Classification and Complexity, Discrete Applied Mathematics, Vol. 5, 1983, 11–21MathSciNetzbMATHCrossRefGoogle Scholar
  173. 172.
    French, S.: Sequencing and Scheduling—An Introduction to the Mathematics of the Job Shop, Horwood, Chichester, 1982zbMATHGoogle Scholar
  174. 173.
    Lawler, E. L.: Recent Results in the Theory of Machine Scheduling, in VIII.1. 1–16, 1983, 202–234MathSciNetGoogle Scholar
  175. 174.
    Sen, T., Dileepan, P., and Ruparel, B.: Minimizing a Generalized Quadratic Penalty Function of Job Completion Times—An Improved Branch-and Bound Approach, Eng. Costs and Production Economics, Vol. 18, 1990, 197–202CrossRefGoogle Scholar
  176. 175.
    Townsend, W.: The Single-Machine Problem with Quadratic Penalty Function of Completion Times—A Branch-and-Bound Solution, Mgmt. Sci., Vol. 24, No. 5, 1978, 530–534MathSciNetzbMATHGoogle Scholar
  177. 176.
    Bagga, P. C. and Kalra, K. R.: A Node Elimination Procedure for Townsend’s Algorithm for Solving the Single Machine Quadratic Penalty Function Scheduling Problem, Mgmt. Sci., Vol. 26, No. 6, 1980, 633–636MathSciNetzbMATHGoogle Scholar
  178. 177.
    De, P., Ghosh, J. B., and Wells, C. E.: Scheduling About a Common Due Date with Earliness and Tardiness Penalties, Comp. Oper. Res., Vol. 17, No. 2, 1990, 231–241MathSciNetzbMATHCrossRefGoogle Scholar
  179. 178.
    Sidney, J. B.: Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties, Oper. Res., Vol. 25, 1977, 62–69MathSciNetzbMATHGoogle Scholar
  180. 179.
    Ogbu, F. A. and Smith, D. K.: The Application of the Simulated Annealing Algorithm to the Solution of the n/m/Cmax Flowshop Problem, Comput. Oper. Res. Vol. 17, No. 3, 1990, 243–253MathSciNetzbMATHCrossRefGoogle Scholar
  181. 180.
    Gupta, J. N. D.: A Functional Heuristic Algorithm for the Flowshop Scheduling Problem, Oper. Res. Quarterly, Vol. 22, 1971, 39–47zbMATHGoogle Scholar
  182. 181.
    Szwarc, W.: Single Machine Scheduling to Minimze Absolute Deviation of Completion Times from a Common Due Date, Nay. Res. Log. Quart., Vol. 36, 1989, 663–673MathSciNetzbMATHCrossRefGoogle Scholar
  183. 182.
    Baker, K. R. and Scudder, G. D.: Sequencing with Earliness and Tardiness Penalties—A Review, Oper. Res., Vol. 38, No. 1, 1990, 22–36MathSciNetzbMATHGoogle Scholar
  184. 183.
    Chand, S. and Schneeberger, H.: Single Machine Scheduling to Minimize Weigthted Earliness Subject to no Tardy Jobs, Eur. J. Oper. Res., Vol. 34, 1988, 221–230MathSciNetzbMATHCrossRefGoogle Scholar
  185. 168.
    VII.2 FertigungsplanungGoogle Scholar
  186. 184.
    Schneeberger, H.: Job Shop Scheduling in Pull Type Production Environments, Ph.D. Thesis, Krannert Graduate School of Management, Purdue Univ., West Lafayette, Indiana, May 1984Google Scholar
  187. 185.
    Chand, S. and Schneeberger, H.: A Note on the Single Machine Scheduling Problem with Minimium Weigthted Completion Time and the Maximum Allowable Tardiness, Nay. Res. Log. Quart., Vol. 33, No. 3, 1986, 551–557MathSciNetzbMATHCrossRefGoogle Scholar
  188. 186.
    Potts, C. N. and Baker, K. R.: Flow Shop Scheduling with Lot Streaming, Oper. Res. Letters, Vol. 8, 1989, 297–303MathSciNetzbMATHGoogle Scholar
  189. 187.
    Page, E. S.: On the Scheduling of Jobs by Computer, Computer J., Vol. 5, 1962, 214–220Google Scholar
  190. 188.
    Ow, P. and Morton, T.: The Single Machine Early-Tardy Problem, Mgmt. Sci., Vol. 35, 1989, 177–191MathSciNetzbMATHGoogle Scholar
  191. 189.
    Szwarc, W.: Parametric Precedence Relations in Single Machine Scheduling, Oper. Res. Letters, Vol. 9, No. 2, 1990, 133–140MathSciNetzbMATHGoogle Scholar
  192. 190.
    Cheng, T. C. E.: Dynamic Programming Approach to the Single-Machine Sequencing Problem with Different Due-Dates, Computers and Math. with Appl., Vol. 19, No. 2, 1990, 1–7zbMATHCrossRefGoogle Scholar
  193. 191.
    Cheng, T. C. E.: Note on a Partial Search Algorithm for the Single-Machine Optimal Common Due-Date Assignment and Sequencing Probl., Comp. and Oper. Res., Vol. 17, No. 3, 1990, 321–324zbMATHGoogle Scholar
  194. 192.
    Widmer, M. and Hertz, A.: A New Heuristic Method for the Flow Shop Sequencing Problem, Eur. J. of Oper. Res., Vol. 41, No. 2, 1989, 186–193MathSciNetzbMATHCrossRefGoogle Scholar
  195. 193.
    Cheng, T. and Gupta, M.: Survey of Scheduling Research Involving Due Date Determination Decisions, Eur. J. Oper. Res. Vol. 38, 1989, 156–166MathSciNetzbMATHCrossRefGoogle Scholar
  196. 194.
    Baker, K. R. and Scudder, G. D.: On the Assignment of Optimal Due Dates, J. Oper. Res. Soc., Vol. 40, 1989, 93–95zbMATHGoogle Scholar
  197. 195.
    Raghavachari, M.: Scheduling Problems with Non-Regular Penalty Functions-A Review, Oper. Res., Vol. 25, 1988, 141–164MathSciNetGoogle Scholar
  198. 196.
    Quaddus, M.: A Generalized Model of Optimal Due-Date Assignment by Linear Programming, J. Oper. Res. Soc., Vol. 38, 1987, 353–359zbMATHGoogle Scholar
  199. 197.
    Bornstein, C. T.: Heuristic Algorithms for the Minimization of Tardiness for the n-Job, m-Machine Scheduling Problem, AMSE Review, Vol. 12, No. 1, 1989, 11–25Google Scholar
  200. 198.
    Du, J. and Leung, J. Y. T.: Minimizing Total Tardiness on One Machine is NP Hard, Math. of Oper. Res., Vol. 15, No. 3, 1990, 483–495MathSciNetzbMATHCrossRefGoogle Scholar
  201. 199.
    Taillard, E.: Some Efficient Heuristic Methods for the Flow Shop Sequenc. Probl., Eur. J. Oper. Res., Vol. 47, No. 1, 1990, 65–74MathSciNetzbMATHCrossRefGoogle Scholar
  202. 200.
    Kunnathur, A. S. and Gupta, S. K.: Minimizing the Makespan with Late Start Penalties Added to Processing Times in a Single Facility Scheduling Problem, Eur. J. Oper. Res., Vol. 47, No. 1, 1990, 56–64MathSciNetzbMATHCrossRefGoogle Scholar
  203. 201.
    Szwarc, W., Posner, M. E., and Liu, J. J.: The Single Machine Problem with a Quadratic Cost Function of Completion Times, Management Science, Vol. 34, No. 12, 1988, 1480–1488MathSciNetzbMATHCrossRefGoogle Scholar
  204. 202.
    Kang, B. S. and Markland, R. E.: Solving the No Intermediate Storage Flowshop Scheduling Problem, Int. J. Oper. and Prod. Mgmt., Vol. 9, No. 3, 1989, 48–59CrossRefGoogle Scholar
  205. 203.
    Brucker, P. J. and Harnacher, H. W.: k Optimal Solutions for Some Polynomially Solvable Scheduling Problems, Eur. J. Oper. Res., Vol. 41, No. 2, 1989, 194–202zbMATHCrossRefGoogle Scholar
  206. 204.
    Garey, M. R., Graham, R. L., and Johnson, D. S.: Performance Guarantees for Scheduling Algorithms, Oper. Res., Vol. 26, 1978, 3–21MathSciNetzbMATHGoogle Scholar
  207. 205.
    Van Wassenhove, L. N. and Gelders, L. F.: Solving a Bicriterion Scheduling Problem, Europ. J. Oper. Res., Vol. 4, 1980Google Scholar
  208. 206.
    Selen, W. J. and Hott, D. D.: A Mixed-Integer Goal-Programming Formulation of the Standard Flow-Shop Scheduling Problem, J. Oper. Res. Soc., Vol. 37, No. 12, 1986, 1121–1128zbMATHGoogle Scholar
  209. 207.
    Bellman, R. E., Esogbue, A. O., and Nabeshima, I.: Mathematical Aspects of Scheduling and Applications, Pergamon Press, Oxford, 1982zbMATHGoogle Scholar
  210. 208.
    Hu, T. C., Kuo, Y. S. and Ruskey, F.: Some Optimum Algorithms for Scheduling Problems with Changeover Costs, Oper. Res., Vol. 33, No. 1, 1987, 94–99MathSciNetGoogle Scholar
  211. 209.
    Kurisu, T.: Two-Machine Scheduling Under Required Precedence Among Jobs, J. Oper. Res. Soc., Japan, Vol. 19, 1976, 1–13MathSciNetzbMATHGoogle Scholar
  212. 210.
    Szwarc, W.: Flow Shop Problems with Time Lags, Mgmt. Sci., Vol. 29, 1983, 477–481zbMATHGoogle Scholar
  213. 211.
    Mitten, L. G.: A Scheduling Problem-An Analytical Solution Based Upon Two Machines, N Jobs, Abitrary Start and Stop Lags, and Common Sequence, J. Ind. Eng., Vol. 10, No. 2, 1959, 131–135Google Scholar
  214. 212.
    Baker, K. R.: Scheduling Groups of Jobs in the Two-Machine Flow-Shop, Math. Comp. Modelling (Oxford), Vol. 13, No. 3, 1990, 29–36CrossRefGoogle Scholar
  215. 213.
    Otolorin, O.: Flow-Shop Setting for Job-Shop Scheduling, Modell. Simul. and Contr., Vol. 17, No. 1, 1989, 47–55Google Scholar
  216. 214.
    Gapp, W., Mankekar, P. S., and Mitten, L. G.: Sequencing Operations to Minimize In-Process Inventory Costs, Mgmt. Sci., Vol. 11, No. 3, 1965, 476–484MathSciNetzbMATHGoogle Scholar
  217. 215.
    King, J. R. and Spachis, A. S.: Scheduling-Bibliography and Review, Int. J. Phys. Distr. and Mater. Mgmt., Vol. 10, 1980, 105–132Google Scholar
  218. 216.
    Sen, T. and Gupta, K.: A State-of-the-Art Survey of Static Scheduling Research Involving Due Dates, OMEGA, Vol. 12, 1984, 63–75CrossRefGoogle Scholar
  219. 217.
    Elmaghraby, S. E.: The Machine Sequencing Problem-Review and Extensions, Naval Res. Log. Quart., Vol. 15, 1968, 205–232Google Scholar
  220. 218.
    Mellor, P.: A Review of Job-Shop Scheduling, Oper. Res. Quart., Vol. 17, 1966, 161–171Google Scholar
  221. 219.
    Spachis, A. S.: Job Shop Scheduling with Approximate Methods, Ph.D. Thesis, Imperial College of Science and Technology, Univ. of London, 1978Google Scholar
  222. 220.
    Hariri, A. M. A. and Potts, C. N.: Branch and Bound Algorithms to Minimize the Number of Late Jobs in a Permutation Flow Shop, Eur. J. Oper. Res., Vol. 38, No. 2, 1989, 228–237MathSciNetzbMATHCrossRefGoogle Scholar
  223. 221.
    Posner, M. E.: The Deadline Constrained Weighted Completion Time Problem-Analysis of a Heuristic, Oper. Res., Vol. 36, No. 5, 1988, 742–746MathSciNetzbMATHGoogle Scholar
  224. 222.
    Azim, M. A., Moras, R. G., and Smith, M. L.: Antithetic Sequences in Flow Shop Schedul., Comp. and Ind. Eng., Vol. 17, 1989, 353–358Google Scholar
  225. 223.
    Barker, J. B. and McMahon, G. B.: Scheduling the General Job-Shop, Mgmt. Sci., Vol. 31, No. 5, 1985, 594–598zbMATHGoogle Scholar
  226. 224.
    Kim, Y.-D.: A Comparison of Dispatching Rules for Job Shops with Multiple Identical Jobs and Alternative Routeings, Int. J. Prod. Res., Vol. 28, No. 5, 1990, 953–962CrossRefGoogle Scholar
  227. 225.
    Vepsalainen, A. P. J. and Morton, T. E.: Priority Rules for Job Shops with Weighted Tardiness Costs, Mgmt. Sci., Vol. 33, No. 8, 1987, 1035–1047Google Scholar
  228. 226.
    Potts, C. N. and Van Wassenhove, L. N.: A Decomposition Algorithm for the Single Machine Total Tardiness Problem, Oper. Res. Letters, Vol. 1, No. 5, 1982, 177–181zbMATHGoogle Scholar
  229. 227.
    Baker, K. R. and Kanet, J. J.: Job Shop Scheduling with Modified Due Dates, J. Operations Management, Vol. 4, No. 1, 1983, 11–22CrossRefGoogle Scholar
  230. 228.
    Nawaz, M., Enscore, E. Jr., and Ham, I.: A Heuristic Algorithm for the M-Machine, N-Job Flow Shop Sequencing Problem, OMEGA, Vol. 11, No. 1, 1983, 91–95CrossRefGoogle Scholar

VII.3 Fließbandbelegung

  1. 1.
    Talbot, F. B. and Patterson, J. H.: Integer Programming Algorithm with Network Cuts for Solving the Assembly Line Balancing Problem, Mgmt. Sci., Vol. 30, No. 1, 1984, 85–99zbMATHGoogle Scholar
  2. 2.
    Held, M., Karp, R. M., and Shareshian, R.: Assembly-Line Balancing-Dynamic Programming with Precedence Constraints, Oper. Res., Vol. 11, 1963Google Scholar
  3. 3.
    Hoffmann, T. R.: Assembly Line Balancing with a Precedence Matrix, Mgmt. Sci., Vol. 9, No. 4, 1963Google Scholar
  4. 4.
    Salveson, M. E.: The Assembly Line Balancing Problem, Journal of Industrial Engineering, Vol. 6, No. 3, 1955, 519–526Google Scholar
  5. 5.
    Freeman, D. R. and Jucher, J. V.: The Line Balancing Problem, Journal of Industrial Engineering, Vol. 18, 1967, 361–364Google Scholar
  6. 6.
    Steinman, H. and Schwinn, R.: Computational Experience with a Zero-One Programming Problem, Oper. Res., Vol. 17, No. 5, 1969, 917–920Google Scholar
  7. 7.
    Gutjahr, A. L. and Nemhauser, G. L.: An Algorithm for the Line Balancing Problem, Mgmt. Sci., Vol. 11, 1964, 308–315MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bowman, E. H.: Assembly Line Balancing by Linear Programming, Oper. Res., Vol. 8, No. 3, 1960, 385–389MathSciNetzbMATHGoogle Scholar
  9. 9.
    Thomopoulos, N. T.: Line Balancing Sequencing for Mixed-Model Assembly, Mgmt. Sci., Vol. 14, No. 2, 1967, 59–75Google Scholar
  10. 10.
    Thomopoulos, N. T.: A Sequencing Procedure for Multi-Model Assembly Lines, Illinois Institute of Technology, Industrial Engineering Department, Doctoral Thesis, Chicago, 1966Google Scholar
  11. 11.
    Tonge, F. M.: Summary of a Heuristic Line-Balancing Procedure, Mgmt. Sci., Vol. 7, No. 1, 1960, 21–42MathSciNetzbMATHGoogle Scholar
  12. 12.
    Tonge, F. M.: A Heuristic Program for Assembly Line Balancing, Prentice-Hall, Englewood Cliffs, N. J., 1961Google Scholar
  13. 13.
    Wedekind, H.: Ein linearer Programmansatz fur das Fließbandproblem, Ablauf and Planungsforschung, Vol. 4, No. 4, 1963, 246–248Google Scholar
  14. 14.
    Jackson, J. R.: A Computing Procedure for a Line Balancing Problem, Mgmt. Sci., Vol. 2, 3, 1956, 261–271Google Scholar
  15. 15.
    Jackson, J. R.: Scheduling a Production Line to Minimize Maximum Tardiness, Univ. of California, Management Science Research Proj., Research Report No. 43, Los Angeles, 1955Google Scholar
  16. 16.
    Mertens, P.: Fließbandabstimmung mit dem Verfahren der begrenzten Enumeration nach Müller-Merbach, Ablauf and Planungsforschung, Vol. 8, No. 4, 1967, 173–182MathSciNetGoogle Scholar
  17. 17.
    Sawyer, J. H. F.: Line Balancing, Machinery Publishing Corporation, Brighton, Sussex, England, 1970Google Scholar
  18. 18.
    Mansoor, E. M.: Assembly Line Balancing-An Improvement of the Ranked Positional Weight Technique, Journal of Industrial Eng., Vol. 15, 1964, 73–77Google Scholar
  19. 19.
    Mansoor, E. M. and Ben Tuvia, S.: Optimizing Balanced Assembly Lines, Journal of Industrial Engineering, Vol. 17, 1966, 126–132Google Scholar
  20. 20.
    Ignall, E. J.: A Review of Assembly Line Balancing, Journal of Industrial Engineering, Vol. 16, 1965, 244–254Google Scholar
  21. 21.
    Arcus, A. L.: COMSOAL-A Computer Method of Sequencing Operations for Assembly Lines, Int. J. of Prod. Res., Vol. 4, 1966Google Scholar
  22. 22.
    Johnson, R. V.: Optimally Balancing Large Assembly Lines with FABLE, Mgmt. Sci., Vol. 34, No. 2, 1988, 240–253Google Scholar
  23. 23.
    Nouh, A.: Sequential Aggregation Algorithm for the Set Partitioning Problem, Comput. Meth. Appl. Mech. Eng., Vol. 63, No. 3, 1987, 225–232MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Saltzman, M. J. and Baybars, I.: Two-Process Implicit Enumeration Algorithm for the Simple Assembly Line Balancing Problem, Eur. J. Oper. Res., Vol. 32, No. 1, 1987, 118–129zbMATHCrossRefGoogle Scholar
  25. 25.
    Graves, S. C. and Lamar, B. W.: An Integer Programming Procedure for Assembly System Design Problems, Oper. Res., Vol. 31, No. 3, 1983, 522–545zbMATHGoogle Scholar
  26. 26.
    Carraway, R. L.: A Dynamic Programming Approach to Stochastic Assembly Line Balancing, Mgmt. Sci., Vol. 35, 1989, 459–471zbMATHGoogle Scholar
  27. 27.
    Mc Cormick, S. T., Pinedo, M. L., Shenker, S., and Wolf, B.: Sequencing in an Assembly Line with Blocking to Minimize Cycle Time, Oper. Res., Vol. 37, No. 6, 1989, 925–935Google Scholar
  28. 28.
    Betts, J. and Mahmoud, K. I.: Identifying Multiple Solutions for Assembly Line Balancing Having Stochastic Task Times, Comput. Ind. Eng., Vol. 16, No. 3, 1989, 427–445CrossRefGoogle Scholar
  29. 29.
    Betts, J. and Mahmoud, K. I.: Method for Assembly Line Balancing, Eng. Costs Prod. Econ., Vol. 18, No. 1, 1989, 55–64CrossRefGoogle Scholar
  30. 30.
    Kao, P. C. and Queyranne, M.: On Dynamic Programming for Assembly Line Balancing, Oper. Res., Vol. 30, No. 2, 1982, 375–390zbMATHGoogle Scholar
  31. 31.
    Arcus, A. L.: An Analysis of a Computer Method of Sequencing Line Operation, Ph.D. Diss., Univ. of California, Berkeley, 1963Google Scholar
  32. 32.
    Baybars, I.: A Survery of Exact Algorithms for the Simple Assembly Line Balancing Probl., Mgmt. Sci., Vol. 32, No. 8, 1986, 909MathSciNetzbMATHGoogle Scholar
  33. 33.
    Helgeson, W. B. and Birnie, D. P.: Assembly Line Balancing Using the Ranked Positional Weight Technique, J. Ind. Eng., Vol. 12, No. 6, 1961, 394Google Scholar
  34. 34.
    Van Assche, F. and Herroelen, W. S.: An Optimal Procedure for the Single-Model Deterministic Assembly Line Balancing Problem, Eur. J. Oper. Res., Vol. 3, 1979, 142zbMATHCrossRefGoogle Scholar
  35. 35.
    Kilbridge, M. D. and Webster, L.: A Review of Analytical Systems of Line Balancing, Oper. Res., Vol. 10, 1962, 626Google Scholar
  36. 36.
    Bhattacharjee, T. K. and Sahu, S.: Complexity of Single Model Assembly Line Balancing Problems, Eng. Costs Prod. Econ., Vol. 18, No. 3, 1990, 203–214CrossRefGoogle Scholar
  37. 37.
    Patterson, J. H. and Albracht, J. J.: Assembly Line Balancing-0/1-Programming with Fibonacci Search, Oper. Res., Vol. 23, 1975, 166MathSciNetzbMATHGoogle Scholar
  38. 38.
    Johnson, N. V. R.: Assembly Line Balancing-A Branch and Bound Algorithm and Computational Comparisons, Int. J. Prod. Res., Vol. 19, No. 3, 1981, 277CrossRefGoogle Scholar
  39. 39.
    Johnson, N. V. R.: A Branch and Bound Algorithm for Assembly Line Balancing with Formulation Irregularities, Mgmt. Sci., Vol. 29, No. 11, 1983, 1309zbMATHGoogle Scholar
  40. 40.
    Wee, T. S. and Magazing, M. J.: An Efficient Branch-and Bound Algorithm for Assembly Line Balancing, Part I-Minimize the Number of Work Stations, Working Paper 150, Univ. of Waterloo, Ontario, Canada, 1981Google Scholar
  41. 41.
    Akagi, F., Oskai, H. and Kikuchi, S.: A Method for Assembly Line Balancing with More Than One Worker in Each Station, Int. J. Prod. Res., Vol. 21, No. 5, 1983, 755CrossRefGoogle Scholar
  42. 42.
    Master, A. A.: An Experimental Investigation and Comparative Evaluation of Production Line Balancing Techniques, Management Science, Vol. 16, No. 11, 1970, 728CrossRefGoogle Scholar
  43. 43.
    Omar, M. T.: Development of a New Heuristic Method for Assembly Line Balancing, M. A. Sc. Thesis, Dept. of Industrial Engineering, Univ. of Windsor, Canada, 1975Google Scholar
  44. 44.
    P. C. Kao: A Preference Order Dynamic Program for Stochastic Assembly Line Balanc., Mgmt. Sci., Vol. 22, No. 11, 1976, 1097–1104zbMATHGoogle Scholar
  45. 45.
    Reeve. N. R.: Balancing Continuous Stochastic Assembly Line, Ph.D. Thesis, State Univ. of New York, Buffalo, 1971Google Scholar
  46. 46.
    Easton, F. F.: A Dynamic Program with Fathoming and Dynamic Upper Bounds for the Assembly Line Balancing Problem, Comp. Oper. Res., Vol. 17, No. 2, 1990, 163–175zbMATHCrossRefGoogle Scholar
  47. 47.
    Thomopoulos, N. T.: Mixed-Model Line Balancing with Smoothed Station Assignments, Mgmt. Sci., Vol. 16, 1970, 593–603zbMATHGoogle Scholar
  48. 48.
    Dar-El, E. M.: Mixed Model Assembly Line Sequencing Problem, OMEGA, Vol. 6, 1978, 313–323CrossRefGoogle Scholar
  49. 49.
    Okamura, K. and Yamashita, H.: A Heuristic Algorithm for the Assembly Line Model-Mix Sequencing Problem to Minimize the Risk of Stopping the Conveyor, Int. J. Prod. Res., Vol. 17, 1979, 233–241CrossRefGoogle Scholar
  50. 50.
    Dar-El, E. M. and Cother, R. F.: Assembly Line Sequencing for Model Mixing, Int. J. Prod. Res., Vol. 13, 1975, 463–477CrossRefGoogle Scholar

VII.4 CIM-Anwendungen (FMS, JIT)

  1. 1.
    Stecke, K. E. and Suri, R. (Eds.): Flexible Manufacturing Systems—Operations Research Models and Applications, Univ. of Michigan, Ann Arbor, 1984Google Scholar
  2. 2.
    Berrada, M. and Stecke, K. E.: A Branch and Bound Approach for Machine Loading in Flexible Manufacturing Systems, Mgmt. Sci., Vol. 32, No. 10, 1986, 1316–1355zbMATHGoogle Scholar
  3. 3.
    Dubois, D.: A Mathematical Model for a Flexible Manufacturing System with Limited In-Process Inventory, Eur. J. Oper. Res., Vol. 14, 1983Google Scholar
  4. 4.
    Stecke, K. E.: Formulation and Solution of Nonlinear Integer Production Planning Problems for Flexible Manuf. Systems, Mgmt. Sci., Vol. 29, No. 3, 1983, 273–287zbMATHGoogle Scholar
  5. 5.
    Chang, T. C. and Wysk, A.: An Introduction to Automated Process Planning Systems, Prentice-Hall, Englewood Cliffs, N. J., 1985Google Scholar
  6. 6.
    Stecke, K. E. and Morin, T. L.: Optimality of Balanced Workload in Flexible Manuf. Systems, Eur. J. Oper. Res., Vol. 20, 1985Google Scholar
  7. 7.
    Stecke, K. E. and Solberg, J. J.: The Optimality of Unbalancing both the Workloads and Machine Group Sizes in Closed Queueing Networks of Multi-Servers Queues, Oper. Res. (forthcoming)Google Scholar
  8. 8.
    Kusiak, A.: Application of Operational Research Models and Techniques in Flex. Manuf. Systems, Eur. J. Oper. Res., Vol. 24, 1986Google Scholar
  9. 9.
    Wittrock, R. J.: An Adaptive Scheduling Algorithm for Flexible Flow Lines, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, Report RC 11387 (#51282) 9/24/85, Sept. 1985Google Scholar
  10. 10.
    Kusiak, A.: Flexible Manufacturing Systems: A Structural Approach, Int. J. of Prod. Res., Vol. 23, 1985, 1057–1073CrossRefGoogle Scholar
  11. 11.
    Kusiak, A. and Finke, G.: Modeling and Solving the Flexible Forging Module Scheduling Problem, Eng. Opt., Vol. 12, 1987, 1–12CrossRefGoogle Scholar
  12. 12.
    Kumar, K. R., Kusiak, A., and Vanelli, A.: Grouping of Parts and Components in Flexible Manufacturing Systems, Eur. J. Oper. Res., Vol. 24, 1986, 387–397CrossRefGoogle Scholar
  13. 13.
    Stecke, K. E.: Design, Planning, Scheduling and Control Problems of Flex. Manuf. Problems, Ann. Oper. Res., Vol. 3, 1985, 3–12CrossRefGoogle Scholar
  14. 14.
    Kochhar, S. and Morris, R. J. T.: Heuristic Method for Flexible Flow Line Scheduling, J. Manuf. Syst., Vol. 6, No. 4, 1987, 299–314CrossRefGoogle Scholar
  15. 15.
    Gershwin, S. B., Akella, R., and Choong, Y. F.: Short-Term Production Scheduling of an Automated Manuf. Facility, IBM J. Res. Dev., Vol. 29, 1985, 392–400Google Scholar
  16. 16.
    Wittrock, R. J.: Scheduling Algorithms for Flexible Flow Lines, IBM J Res. and Dev., Vol. 29, 401–412Google Scholar
  17. 17.
    Finke, G. and Kusiak, A.: Network Approach to Modelling of Flexible Manufacturing Modules and Cells, Proc. Conf. Production Systems, INRIA, Paris, 1985Google Scholar
  18. 18.
    Aliev, R. A.: Production Control on the Basis of Fuzzy Models, Fuzzy Sets and Systems, Vol. 22, No. 1, 1987, 43–56zbMATHCrossRefGoogle Scholar
  19. 19.
    Bastos, J. M.: Batching and Routing: Two Functions in the Operational Planning of Flex. Manuf. Systems, Eur. J. Oper. Res., Vol. 33, No. 3, 1988, 230–244MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jackson, R. H. F. and Jones. A. W. T.: Architecture for Decision Making in the Factory of the Future, Interfaces (Providence, Rhode Island), Vol. 17, No. 6, 1987, 15–28Google Scholar
  21. 21.
    Mc Geough, J. E. (Ed.): Int. Conf. on Computer-Aided Production Engineering, Edinburgh, Scotl., 1986, Mechanical Eng. Publ. Ltd., Bury St. Edmunds, England, 1986Google Scholar
  22. 22.
    Wilson, J. M.: Formulation and Solution of a Set of Sequencing Problems for Flexible Manufacturing Systems, Proc. Inct. Mech. Eng. Part B, Vol. 201, No. 4, 1987, 247–249CrossRefGoogle Scholar
  23. 23.
    Kusiak, A. and Chen, M.: Expert Systems for Planning and Scheduling Manuf. Systems, Eur. J. Oper. Res., Vol. 34, No. 2, 1988, 113–130MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kusiak, A. and Heragu, S. S.: Computer Integrated Manufacturing-A Structural Perspective, IEEE Network, Vol. 2. No. 3, 1988, 14–22CrossRefGoogle Scholar
  25. 25.
    Wittrock, R. J.: Adaptable Scheduling Algorithm for Flexible Flow Lines, Oper. Res., Vol. 36, No. 1988, 445–453Google Scholar
  26. 26.
    Avonts, L. H. and Van Wassenhove, L. N.: Part Mix and Routing Mix Problem in FMS-A Coupling Between an LP Model and a Closed Queueing Network, Int. J. Prod. Res., Vol. 26, No. 12, 1988, 1891–1902CrossRefGoogle Scholar
  27. 27.
    Lashkari, R. S., Dutta, S. P., and Padhye, A. M.: New Formulation of Operation Allocation Problem in Flexible Manufacturing Systems, Mathematical Modelling and Computational Experience, Int. J. Prod. Res., Vol. 25, No. 9, 1987, 1267–1283zbMATHCrossRefGoogle Scholar
  28. 28.
    Avonts, L. H., Gelders, L. F., and Van Wassenhove, L. N.: Allocating Work Between an FMS and a conventional Job Shop-A Case Study, Eur. J. Oper. Res., Vol. 33, No. 3, 1988, 245–256CrossRefGoogle Scholar
  29. 29.
    Heragu, S. S. and Kusiak, A.: Machine Layout Problem in Flexible Manufacturing Systems, Oper. Res., Vol. 36, No. 2, 1988, 258–268Google Scholar
  30. 30.
    De Werra, D.: On the Two-Phase Method for Preemptive Scheduling, Eur. J. Prod. Res., Vol. 37, No. 2, 1988, 227–235zbMATHGoogle Scholar
  31. 31.
    Rembold, U. and Levi, P.: Factory of the 90s, Comput. Mech. Eng., Vol. 6, No. 6, 1988, 30–37Google Scholar
  32. 32.
    Escudero, L. F. and Perez-Sainz De Rozas, G.:Production Planning in FMS, Questiio, Vol. 6, No. 1, 1987, 85–114Google Scholar
  33. 33.
    Gupta, M. C., Judt, C., Gupta, Y. P., and Balakrishnan, S.: Expert Scheduling System for a Prototype Flexible Manufacturing Cell-A Framework, Comp. and Oper. Res., Vol. 6, No. 4, 1989, 363Google Scholar
  34. 34.
    Kimemia, J. G. and Gershwin, S. B.: Flow Optimization in Flexible Manuf. Systems, Int. J. Prod. Res., Vol. 23, No. 1, 1985, 81–96CrossRefGoogle Scholar
  35. 35.
    Kusiak, A.: Integer Programming Approach to Process Planning, Int. J. of Advanced Manuf. Technology, 1986, 73–83Google Scholar
  36. 36.
    Philipson, R. H. and Ravindran, A.: Applications of Mathematical Programming to Metal Cutting, Math. Progr., Vol. 11, 1979, 116–134zbMATHGoogle Scholar
  37. 37.
    Greene, T. J. and Sadowski, R. P.: A Mixed-integer Program for Loading and Scheduling Multiple Flexible Manufacturing Cells, Eur. J. Oper. Res., Vol. 24, 1986, 379–386zbMATHCrossRefGoogle Scholar
  38. 38.
    Greene, T. J. and Sadowski, R. P.: Loading the Cellularly Divided Group Technology Manufacturing Systems, Proc. of the AIIE Fall Conference, 1980Google Scholar
  39. 39.
    Greene, T. J. and Sadowski, R. P.: Celluar Manufacturing Control. J. of Manufacturing Systems, Vol. 2, No. 2, 1983, 137–146CrossRefGoogle Scholar
  40. 40.
    Buzacott, J. A and Shanthikumar, J. G.: Models for Understanding Flex. Manuf. Systems, AIIE Trans., Vol. 12, No. 4, 1980, 339–350Google Scholar
  41. 41.
    Philipoom, P. R., Rees, L. P., Taylor, B. W. and Huang, P. Y.: A Mathematical Programming Approach for Determining Work-Center Lotsizes in a Just-In-Time System with Signal Kanbans, Int. J. Prod. Res., Vol. 28, No. 1, 1990, 1–15CrossRefGoogle Scholar
  42. 42.
    Monden, Y.: How Toyota Shortened Supply Lot Production Time, Waiting Time, and Conveyance Time, Ind. Eng., Vol. 13, 1981, 22–30Google Scholar
  43. 43.
    Escudero, L. F.: A Mathematical Formulation of a Hierarchical Approach for Prod. Planning in FMS, in VII. 1–77, 1987, 231–245Google Scholar
  44. 44.
    Heragu, S. S. and Kusiak, A.: Machine Layout-An Optimization and Knowledge-Based Approach, Int. J. Prod. Res., Vol. 28, No. 4, 1990, 615–635CrossRefGoogle Scholar
  45. 45.
    Heragu, S. S.: Machine Layout-An Optimization and Knowledge-Based Approach, Ph.D. Diss., Dept. of Mechanical and Industrial Engineering, Univ. of Manitoba, Winnipeg, Canada, 1988Google Scholar
  46. 46.
    Sawik, T.: Modeling and Scheduling of a Flexible Manufacturing System, Eur. J. Oper. Res., Vol. 45, No. 2, 1990, 177–190MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Hintz, G. W., and Zimmermann, H.-J.: A Method to Control Flexible Manuf. Systems, Eur. J. Oper. Res., Vol. 41, No. 3, 1989, 321–334CrossRefGoogle Scholar
  48. 48.
    Kusiak, A.: KBSS-A Knowledge Based System for Scheduling in Automated Manufacturing, Mathematical and Computer Modelling (Oxford), Vol. 13, No. 3, 1990, 37–55zbMATHCrossRefGoogle Scholar
  49. 49.
    Escudero, L. F.: A Production Planning in FMS, Annals of Operations Research, Vol. 17, 1989, 69–104zbMATHCrossRefGoogle Scholar
  50. 50.
    Miltenburg. G. J., Steiner, G., and Yeomans, S.: A Dynamic Programming Algorithm for Scheduling Mixed-Model, Just-In-Time Production Systems, Mathematical and Computer Modelling (Oxford), Vol. 13, No. 4, 1990, 57–66Google Scholar
  51. 51.
    Miltenburg, G. J.: Level Schedules for Mixed-Model Assembly Lines in Just-In-Time Prod. Syst., Mgmt. Sci., Vol. 35, 1989, 192–207zbMATHGoogle Scholar
  52. 52.
    Kusiak, A.: Artificial Intelligence and Operations Research in Flexible Manufacturing Systems, Inf. Proc. and Oper. Res., Vol. 25, No. 1, 1987, 2–22Google Scholar
  53. 53.
    Groeflin, H., Luss, H., Rosenwein, M. B., and Wahls, E. T.: Final Assembly Sequencing for Just-In-Time Manufacturing, Int. J. Prod. Res., Vol. 27, No. 2, 1989, 199–213CrossRefGoogle Scholar
  54. 54.
    Hall, R. W.: Zero Inventories, Dow Jones-Irwin, Homewood, III., 1983Google Scholar
  55. 55.
    Huang, P. Y., Ress, L. P., and Taylor, B. W.: The Japanese Just-In-Time Technique (with Kanbans) for a Multiline, Multistage Production System, Decision Sciences, Vol. 14, 1983, 326–344CrossRefGoogle Scholar
  56. 56.
    Browne, J., Harhen, J., and Shivnan, J.: Production Management Systems—A CIM Perspective, Addison-Wesley, London, 1988Google Scholar

VII.S Mineralölindustrie

  1. 1.
    Aonuma, T, Nishi, T., and Takai, E.: Implementation of a Decomposition-Coordination Approach to Refinery Production Scheduling, Int. J. Prod. Res., Vol. 21, No. 6, 1983Google Scholar
  2. 2.
    Koehler, R.: Der Einsatz von Datenverarbeitungsanlagen fir Optimierungsrechnungen bei Mineralölraffinerien, Elektronische Datenverarbeitung, Vol. 9, No. 7, 1967, 306–311Google Scholar
  3. 3.
    Garvin, W. W. Crandall, H. W., John, J. B., and Spellman, R. A.: Applications of Linear Programming in the Oil Industry, Management Science, Vol. 3, 1957, 407–430MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Manne, A.: Scheduling of Petroleum Refinery Operations, Havard Economic Studies 48, Havard Univ. Press, Cambridge Univ. Press, Cambridge, Mass., 1956Google Scholar
  5. 5.
    Mc Coll, W. H.: Management and Operations Research in an Oil Company, Operations Research Quarterly, Vol. 20, 1969, 64–65Google Scholar
  6. 6.
    Catchpole, A. R.: An Application of LP to Integrated Supply Problems in the Oil Industry, Oper. Res. Quart., Vol. 13, 1962, 163–169Google Scholar
  7. 7.
    Charnes, A., Cooper, W. W., and Mellon, B.: Blending Aviation Gasolines—A Study in Programming Interdependent Activities in an Integrated Oil Company, Econometrica, Vol. 20, 1952, 135–159CrossRefGoogle Scholar
  8. 8.
    Charnes, A. Cooper, W. W., and Mellon, B.: A Model for Programming and Sensitivity Analysis in an Integrated Oil Company, Econometrica, Vol. 22, No. 2, 1954Google Scholar
  9. 9.
    Symonds, G. H.: Linear Programming Solves Gasoline Refinery and Blending Problems, Ind. and Eng. Chemistry, Vol. 48, No. 3, 1956Google Scholar
  10. 10.
    Magoulas, K., Marinos-Kouris, D., and Lygeros, A.: Instructions are Given for Building Gasoline-Blending L. P., Oil Gas J., Vol. 86, No. 27, 1988, 32Google Scholar
  11. 11.
    Magoulas, K., Marinos-Kouris, D., and Lygeros, A.: Actual Blending Liner Programming Model is Developed, Oil Gas J., Vol. 86, No. 29, 1988, 44–48Google Scholar
  12. 12.
    Cheney, L. K., Ullman, R. J., and Kawarantani, T. T.: The Significance of Mathematical Programming in the Business World, RAND Symposium on Math, Programming 1959, RAND Report R-351, 1960Google Scholar
  13. 13.
    Prince, B., Purrington, B., Ramsey, J., and Pope, J.: Gasoline Blending at Texaco Using Nonlinear Programming, Presented at TIMS/ORSA National Meeting, Chicago, 1983Google Scholar
  14. 14.
    Olsbu, A. and Loeken, P. A.: Mixed-Integer Programming Model for the Design and Planning of Power Systems in Oil Production Platforms, Eng. Costs Prod. Econ., Vol. 14, No. 4, 1988, 281–296CrossRefGoogle Scholar
  15. 15.
    Sullivan, J.: Application of Mathematical Programming Methods to Oil and Gas Field Development Planning, Math. Progr., Vol. 42, No. 1, 1988, 189–200CrossRefGoogle Scholar
  16. 16.
    Shepard, S. W.: Computerized Fleet Planning for Bulk Petroleum Products, Exxon Corporation, CCS Department Paper, Florham Park, New Jersey, 1984Google Scholar
  17. 17.
    Diwekar, U. M., Madhavan, K. P., Swaney, R. E.: Optimization of Multicomponent Batch Distillation Columns, Ind. Eng. Chem. Res., 1989, 1011–1017Google Scholar
  18. 18.
    Aboudi, R. et al.: A Mathematical Programming Model for the Development of Petroleum Fields and Transport Systems, Eur. J. Oper. Res., Vol. 43, No. 1, 1989, 13–25MathSciNetCrossRefGoogle Scholar
  19. 19.
    Diwekar, U. M.: Simulation, Design and Optimization of Multicomponent Batch Distillation Columns, Ph.D. Thesis, IIT Bombay, India, 1988Google Scholar
  20. 20.
    Brown, G. W., Graves, G. W., and Ronen, D.: Scheduling Ocean Transportation of Crude Oil, Mgmt. Sci., Vol. 33, No. 3, 1987, 335–346Google Scholar
  21. 21.
    Ramsey, J. R. Jr. and Truesdale, P. B.: Blend Optimization Integrated into Refinery-Wide Strategy, Oil and Gas J., Vol. 88, No. 12, 1990, 40–44Google Scholar
  22. 22.
    Bodington, C. E. and Baker, T. E.: A History of Mathematical Programming in the Petroleum Industry, Interfaces, Vol. 20, No. 4, 1990, 117–127CrossRefGoogle Scholar
  23. 23.
    Symonds, G. H.: Linear Programming—The Solution of Refinery Problems, ESSO Standard Oil Company, New York, 1955Google Scholar

VII.6 Mischungsplanung

  1. 1.
    Swanson, E. R.: Solving Minimum-Cost Feed Mix Problems, Journal of Farm Economics, Vol. 37, 1955, 135–139CrossRefGoogle Scholar
  2. 2.
    Van de Panne, C: Minimum Cost Cattle Feed Under Probabilistic Protein Constraints, Mgmt. Sci., Vol. 3, No. 3, 1963Google Scholar
  3. 3.
    Symonds, G. H.: Linear Programming Solves Gasoline Refinery and Blending Problems, Ind. Eng. Chemistry, Vol. 48, No. 3, 1956Google Scholar
  4. 4.
    Smith. V. E.: Linear Programming Models for the Determination of Palatable Human Diets, J. of Farm Econ., Vol. 41, 1959, 272–283CrossRefGoogle Scholar
  5. 5.
    Thormaehlen, M. V.: Ein computergestütztes Produktionsplanungssystem für Rezepturbetriebe, Betriebsw. Verl. Dr. Gabler, Wiesbaden, 1974Google Scholar
  6. 6.
    Koehler, R.: Der Einsatz von Datenverarbeitungsanlagen für Optimierungsrechnungen bei Mineralölraffinerien, Elektronische Datenverarbeitung, Vol. 9, No. 7, 1967, 306–311Google Scholar
  7. 7.
    Newman, P.: Some Calculations on Least-Cost Diets Using the Simplex Method, Oxford Univ., Bull Institute of Statistics, Vol. 17, 1955, 303–320Google Scholar
  8. 8.
    Williams, H. P. and Redwood, A. C.: A Structured Linear Programming Model in the Food Ind., Oper. Res. Quart., Vol. 25, 1974, 517–527zbMATHGoogle Scholar
  9. 9.
    Jones, W. G. and Rope, C. M.: Linear Programming Applied to Production Planning—A Case Study, Oper. Res. Quart., Vol. 15, 1964, 293–302Google Scholar
  10. 10.
    Charnes, A., Cooper, W. W., and Mellon, B.: Blending Aviation Gasolines, Econometrica, Vol. 20, 1952, 135–159CrossRefGoogle Scholar
  11. 11.
    IBM: Aluminium Alloy Blending, IBM Form No. GE20–0127Google Scholar
  12. 12.
    IBM: Cotton Blending, IBM Form No. GE20–0164Google Scholar
  13. 13.
    IBM: Feed Manufacturing, IBM Form No. GE20–0148Google Scholar
  14. 14.
    IBM: Gasoline Blending, IBM Form No. GE20–0168Google Scholar
  15. 15.
    IBM: Ice Cream Blending, IBM Form No. GE20–0156Google Scholar
  16. 16.
    IBM: Meat Blending, IBM Form No. GE20–0161Google Scholar
  17. 17.
    Fisher, W. D. and Schruben, L. W.: Linear Programming Applied to Feed Mixing under Different Price Conditions, J. of Farm Economics, Vol. 53, 1953, 471–483CrossRefGoogle Scholar
  18. 18.
    Hutton, R. F. and Mc Alexander, R. H.: A Simplified Feed-Mix Model. J. of Farm Economics, Vol. 39, 1957Google Scholar
  19. 19.
    Waugh, F. V.: The Minimum-Cost Dairy Feed, J. of Farm Economics, Vol. 33, No. 3, 1951, 299–310CrossRefGoogle Scholar
  20. 20.
    Thomas, G. S., Jennings, J. C., and Abbott, P.: A Blending Problem Using Integer Progr. On-Line, Math. Progr. Study, Vol. 9, 1978, 30–47CrossRefGoogle Scholar

VII.7 Vertriebsplanung

  1. 1.
    Kilger, W.: Optimale Produktionsplanung und Absatzplanung, Entscheidungsmodelle für den Produktions-und Absatzbereich industrieller Betriebe, Westdeutscher Verlag, Opladen, 1973Google Scholar
  2. 2.
    Lott, R.: Kostenoptimaler Vertrieb eines Konsumgutes einschliesslich Standortbestimmung mit ganzzahliger linearer Optimierung, Zeitschr. für Oper. Res., Vol. 18, No. 6, 1974, 229–235Google Scholar
  3. 3.
    Bard, Y.: Production-Transportation-Marketing Model, IBM New York Scientific Center, Report No. 320–2933, New York, 1966Google Scholar
  4. Bass, F. M. et al. (Eds.): Mathematical Models and Methods in Marketing, R. D. Irwin, Homewood, III., 1961Google Scholar
  5. 5.
    Müller-Merbach, H.: Operations Research in Marketing—Anwendungsmöglichkeiten, Battelle Institut, Marketing, Frankfurt/M., 1968Google Scholar
  6. 6.
    Topritzhofer, E.: Modelltheoretische Ansätze zur optimalen Lösung von Logistics Probl. im Marketing, Der Markt, H. 35, 1970, 71–77Google Scholar
  7. 7.
    Rao, V. R. and Thomas, L. J.: Dynamic Models for Sales Promotion Policies, Oper. Res. Quarterly, Vol. 24, 1973, 403–417Google Scholar
  8. 8.
    Oral, M. and Kettani, O.: A Mathematical Programming Model for Market Share Prediction, Int. J. Forecasting, Vol. 5, No. 1, 1989, 59–68CrossRefGoogle Scholar
  9. 9.
    Oral, M. and Ozkan, A. O.: An Empirial Study on Measuring Industrial Competitiveness, J. Oper. Res. Soc., Vol. 37, No. 4, 1986, 345–354Google Scholar
  10. 10.
    Sinha, P. and Zoltners, A. A.: Integer Programming Models for Sales Resources Allocation, Mgmt. Sci., Vol. 26, 1980, 242–260zbMATHGoogle Scholar

VII.8 Standortplanung

  1. 1.
    Balinski, M. L.: Integer Programming, Methods, Uses, Computation, Mgmt. Sci., Vol. 12, No. 3, 1965, 253–311MathSciNetzbMATHGoogle Scholar
  2. 2.
    Domschke, W.: Modelle und Verfahren zur Bestimmung betrieblicher und innerbetrieblicher Standorte—Ein überblick, Zeitschr. für Oper. Res., Vol. 19, No. 2, 1975, 13–41MathSciNetGoogle Scholar
  3. 3.
    Heinhold, M.: Ein Operations-Research-Ansatz zur Bestimmung von Standorten und Einzugsbereichen von Krankenversorgungsbetrieben, Zeitschr. für Oper. Res., Vol 19, No. 4, 1975, 103–118Google Scholar
  4. 4.
    Heinhold, M.: Lokations-und Allokationsprobleme bei Kranken-versorgungsbetrieben, Diss., München, 1974Google Scholar
  5. 5.
    Guignard, M.: and Spielberg, K.: Algorithms for Exploiting the Structure of the Simple Plant Location Problem, Ann. Discrete Math., Vol. 1, 1977, 247–271MathSciNetCrossRefGoogle Scholar
  6. 6.
    Toregas, C., Swain, R., ReVelle, C., and Bergman, L.: The Location of Emergency Service Facilities, Oper. Res., Vol. 19, 19711, 1363–1373Google Scholar
  7. 7.
    Feldman, E. F., Lehrer, A., and Ray, T. L.: Warehouse Location under Continuous Economies of Scale, Mgmt. Sci., Vol. 12, 1966, 670–684Google Scholar
  8. 8.
    Frazer, W. D.: An Approximate Alogorithm for Plant Location Under Piecewise Linear Concave Costs, IBM Res. Report RC-1875, 1967Google Scholar
  9. 9.
    Gray, P.: Mixed-Integer Programming Algorithms for Site Selection and Other Fixed Charge Problems Having Capacity Constraints, Techn. Report 101, Dept. of Operations and Statistics, Stanford Univ., Stanford, CA., 1967Google Scholar
  10. 10.
    Klein, M. and Klimpel, R. R.: Application of Linearly Constrained Nonlin. Optimiz. to Plant Location and Sizing, J. Ind. Eng., 1967Google Scholar
  11. 11.
    Baumol, W. J. and Wolfe, P.: A Warehouse Location Problem, Operations Research, Vol. 6, No. 2, 1958, 252–263MathSciNetCrossRefGoogle Scholar
  12. 12.
    Spielberg, K.: Algorithms for the Simple Plant Location Problem with Some Side Conditions, Oper. Res., Vol. 17, 1969, 85–111zbMATHGoogle Scholar
  13. 13.
    David, P. S. and Ray, T. L.: A Branch-and-Bound Algorithm for the Capacitated Facilities Location Problem, Nay. Res. Logist. Quart., Vol. 16, 1969, 331–344Google Scholar
  14. 14.
    Bilde, O. and Krarup, F.: Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem, Ann. of Discrete Math., Vol. 1, 1977, 79–97MathSciNetCrossRefGoogle Scholar
  15. 15.
    Armour, G. C. and Buffa, E. S.: A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities, Mgmt. Sci., Vol. 9, No. 2, 1963Google Scholar
  16. 16.
    Balinski, M. L. and Wolfe, O.: On Bender’s Decomposition and a Plant Location Problem, Mathematica Working Paper, ARO-27, Dec. 1963Google Scholar
  17. 17.
    Liebmann, H.-P.: Die Standortwahl als Entscheidungsproblem. Ein Beitrag zur Standortbestimmung von Produktions-und Handelsbetrieben, Physica, Würzburg, 1971Google Scholar
  18. 18.
    Beck, S.: Probleme optimaler Standortwahl, Qualitätskontrolle und Operational Research, Heft 10, 1960Google Scholar
  19. 19.
    Cooper, L.: The Transportation-Location Problem, Oper. Res., Vol. 20, No. 2, 1972, 94–108zbMATHGoogle Scholar
  20. 20.
    Elson D. G.: Site Location Via Mixed-Integer Programming, Oper. Res. Quart., Vol. 23, 31–43Google Scholar
  21. 21.
    Guignard, M.: Lagrangean Dual Ascent Algorithm for Simple Plant Location Probl., Eur. J. Oper. Res., Vol. 35, No. 2, 1988, 193–200MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Leung, J. M. Y. and Magnanti, T. L.: Valid Inequalities and Facets of the Capacitated Plant Location Problem, Math. Progr., Vol. 44, 1989, 271–292MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Erlenkotter, D.: A Dual-Based Procedure for Uncapacitated Facility Location, Operations Research, Vol. 26, 992–1009Google Scholar
  24. 24.
    Fisher, M. L. and Hochbaum, D. S.: Database Location in Computer Networks, J. ACM, Vol. 27, 718–735Google Scholar
  25. 25.
    Guignard, M. and Spielberg, K.: A Direct Dual Method for the Mixed Plant Location Problem with Some Side Constraints, Math. Progr.,Vol. 17, 1979, 198–228MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Maranzana, F. E.: On the Location of Supply Points to Minimize Transportation Costs, IBM Systems Journal, 1963, 129–135Google Scholar
  27. 27.
    Warszawski, A.: Multi-Dimensional Location Problems, Oper. Res., Quart., Vol. 24, 1973, 165–179zbMATHCrossRefGoogle Scholar
  28. 28.
    Erkut, E., Francis, R. L., Lowe, T. J., and Tamir, A.: Equivalent Mathematical Programming Formulations of Monotonic Tree Network Location Problems, Oper. Res., Vol. 37, No. 3, 1989, 447–461MathSciNetzbMATHGoogle Scholar
  29. 29.
    Love, R. F., Morris, J. G., and Wesolowsky, G. O.: Facilities Location—Models and Methods, North-Holland, Amsterdam, 1988zbMATHGoogle Scholar
  30. 30.
    Erlenkotter, D.: A Dual-Based Procedure for Uncapacitated Facility Location, Oper. Res., Vol. 26, 1978, 992–1009MathSciNetzbMATHGoogle Scholar
  31. 31.
    Gavett, J. W. and Plyter, N. V.: The Optimal Assignment of Facilities to Locations by Branch-and-Bound, Oper. Res., Vol. 14, 1966, 210–233Google Scholar
  32. 32.
    Francis, R. L. and White, J. A.: Facility Layout and Location—An Analytical Approach, Prentice-Hall, Englewood Cliffs, N. J., 1974Google Scholar
  33. 33.
    Francis, R. L., Mc Ginnis, L. F., and White, J. A.: Location Analysis, Eur. J. of Oper. Res.,Vol. 12, 1983, 220–252zbMATHCrossRefGoogle Scholar
  34. 34.
    Marks, D. H., ReVelle, C., and Liebman, J. C.: Mathematical Models for Location—A Review, J. Urban Plann. Devl., Vol. 96, 1970, 81–93Google Scholar
  35. 35.
    ReVelle, C. and Swain R.: Central Facilities Location, Geogrl. Analysis, Vol. 2, 1970, 30–42Google Scholar
  36. 36.
    Fortenberry, J. C., Mitra, A., and Willis, R. D. M.: A Multi-Criteria Approach to Optimal Emergency Vehicle Location Analysis, Comp. and Eng., Vol. 16, No. 2, 1989, 339–347Google Scholar
  37. 37.
    Tompkins, J. A. and White, J. A.: Facilities Planning, Wiely, New York, 1984Google Scholar

VII.9 Transport-und Tourenplanung

  1. 1.
    Uebe, G.: Optimale Fahrpläne, Springer, Berlin, 1970zbMATHGoogle Scholar
  2. 2.
    Golden, B., Assad, A., and Dahl, R.: Analysis of a Large Scale Vehicle Rounting Problem With an Inventory Component, Large Scale Syst., Vol. 7, No. 2, 1984Google Scholar
  3. 3.
    Waters, C. D. J.: Interactive Vehicle Scheduling, J. of the Oper. Res., Soc., Vol. 35, No. 9, 1984Google Scholar
  4. 4.
    Carraresi, P. and Gallo, G.: Network Models for Vehicle and Crew Scheduling, Eur. J. of Oper. Res., Vol. 16, No. 2, 1984, 139–151MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Christofides, N.: Period Routing Problem, Networks, Vol. 14, No. 2, 1984Google Scholar
  6. 6.
    Frank, H. et al.: Optimierung der Transporte technischen Gasen in Stahlflaschen, Chem. Techn. (DDR), Vol. 38, Heft 9, Sept. 1986Google Scholar
  7. 7.
    Christofides, N., Mingozzi, A., and Toth, P.: Exact Methods for Vehicle Routing, Math. Progr., 1981Google Scholar
  8. 8.
    Christofides, N., Mingozzi, A., and Toth, P.: State Space Relaxations for the computation of Bounds to Routing Problems, Networks, 1981Google Scholar
  9. 9.
    Christofides, N.: Uses of a Vehicle Routing and Scheduling System in Strategic Distribution Planning, in X-47, 1986Google Scholar
  10. 10.
    Stein, D. M.: An Asympotoic Probabilistic Analysis of a Routing Problem, Math. of Oper. Res., Vol. 3, No. 2, 1978Google Scholar
  11. 11.
    Clarke, G. and Wright, J. W.: Sceduling Vehicles from a Central Depot to a Number of Delivery Points, Oper. Res., Vol. 12, 1964, 568–581Google Scholar
  12. 12.
    Dantzig, G. B. and Ramser, J. H.: The Truck Dispatching Problem, Management Science, Vol. 6, No. 1, 1960, 80–91MathSciNetCrossRefGoogle Scholar
  13. 13.
    Balinski, M. L. and Quandt, M. H.: On an Integer Program for a Delivery Problem, Oper. Res., Vol. 12, 1964, 300–304Google Scholar
  14. 14.
    Pierce, J. F.: Applications of Combinatorial Programming Algorithms for a Class of All Zero-One Integer Programming Problems, Management Science, Vol. 15, 1968, 191–209MathSciNetCrossRefGoogle Scholar
  15. 15.
    Christofides, N., Mingozzi, A., and Toth, P.: The Vehicle Routing Problem, in VIII.1. 6–05, 1979Google Scholar
  16. 16.
    Desrochers, M., Lenstra, J. K., Savelsbergh, M. W. P., and Soumis, F.: Vehicle Routing with Time Windows—Optimization and Approximation, Centrun voor Wiskunde en Informatica, Amsterdam, Dept. of Oper. Res., and System Theory, 1987Google Scholar
  17. 17.
    Szwarc, W.: The Transportation Problem with Stochastic Demand, Mgmt. Sci., Vol. 11, 1964, 35–50Google Scholar
  18. 18.
    Arabeyre, J. P., Feanley, J., Steiger F. C. and Teather, W.: The Airline Scheduling Problem—A Survey, Trans. Sci., Vol. 3, 1969, 140–163Google Scholar
  19. 19.
    Cavanagh, R. A.: Airline Crew Scheduling, Presented at XII TIMS International Meeting, Kyoto, Japan, July 1975Google Scholar
  20. 20.
    Nicoletti, B.: Autom. Crew Rostering, Trans. Sci., Vol. 9, 1975, 33Google Scholar
  21. 21.
    Babic, O.: Optimization of Refuelling Truck Fleets at an Airpot, Transp. Res. Part B, Vol. 21B, No. 6, 1987, 479–487CrossRefGoogle Scholar
  22. 22.
    Bard, J. F. and Cunningham, I. G.: Improving Through-Flight Schedules, IIE Trans., Vol. 19, No. 3, 1987, 242–251CrossRefGoogle Scholar
  23. 23.
    Brucker, P. and Hurink, J.: Railway Scheduling Problem, Zeitschrift für Oper. Res., Ser. A, Vol. 30, No. 5, 1986, 223–227MathSciNetzbMATHGoogle Scholar
  24. 24.
    Crainic, T. G. and Rousseau, J.-M.: Column Generating Principle and The Airline Crew Scheduling Problem, Infor J., Vol. 25, No. 2, 1987, 136–151zbMATHGoogle Scholar
  25. 25.
    Waters, C. D. J.: Solution Procedure for the Vehicle Scheduling Problem Based on Iterative Route Improvement, J. of the Oper. Res. Soc., Vol. 38, No. 9, 1987, 833–839zbMATHGoogle Scholar
  26. 26.
    Bellman, R. E.: On a Routing Problem, Quart. Appt. Math., Vol. 16, 1958, 87–90zbMATHGoogle Scholar
  27. 27.
    Balas, E.: Solution of Large-Scale Transportation Problems Through Aggregation, Rumän. Akademie der Wiss., Mathem. Institut, 1963Google Scholar
  28. 28.
    Balas, E.: The Dual Method for the Generalized Transportation Problem Mgmt. Sci., Vol. 12, 1966, 555–568MathSciNetzbMATHGoogle Scholar
  29. 29.
    Balas, E. and Hammer, P. L.: On the Generalized Transportation Problem, Mgmt. Sci., Vol. 11, 1964, 188–202MathSciNetzbMATHGoogle Scholar
  30. 30.
    Balas, E. and Hammer, P. L.: On the Transportation Problem, Part I and II, Cahiers du Centre d’Etudes de Recherche Operationelle, Vol. 4, 1962, 98–116 and 131–160Google Scholar
  31. 31.
    Balinski. M. L.: Fixed-Cost Transportation Problems, Naval Research Logistics Quarterly, Vol. 8, 1961, 41–54CrossRefGoogle Scholar
  32. 32.
    Balinski, M. L. and Gomory, R. E.: A Primal Method for Assignment and Transportation Probl., Mgmt. Sci., Vol. 10, 1964, 578–593Google Scholar
  33. 33.
    Bard, Y.: Production-Transportation-Marketing Model, IBM New York Scientific Center, Report No. 320–2933, New York, 1966Google Scholar
  34. 34.
    Barth, U.: Das dreidimensionale Transportproblem, Univ. Mainz, Lehrstuhl für Betriebsw., Forschungsbericht 1–1968, Mainz, 1968Google Scholar
  35. 35.
    Barth, U.: Das dreidimensionale Transportproblem der linearen Planungsrechung-Eigenschaften und Lösung, Techn. Hochschule Darmstdt, Fakultät für Math. und Physik, Diss., Darmstadt, 1971Google Scholar
  36. 36.
    Liebling, T. M.: Graphentheorie in Planungs-und Transportproblemen, am Beispiel des städt. Strassendienstes, Springer, Berlin, 1970Google Scholar
  37. 37.
    Beale, E. M. L.: An Algorithm for Solving the Transportation Problem When Shipping Cost Over Each Route is Convex, Nay. Res. Logist. Quart., Vol. 6, 1959, 43–56MathSciNetCrossRefGoogle Scholar
  38. 38.
    Beckmann, M. J., Mc Guire, C. B. and Winsten, C.: Studies in the Economics of Transportation, Yale Univ. Press, New Haven, 1956Google Scholar
  39. 39.
    Gaskell, T. J.: Bases for Vehicle Fleet Scheduling, Oper. Res., Quart., Vol. 18, 1967, 281CrossRefGoogle Scholar
  40. 40.
    Lourie, J. R.: Topology ans Computation of the Generalized Transportation Problem, Mgmt. Sci., Vol. 11, 1964, 177–187Google Scholar
  41. 41.
    Williams, A. C.: A Treatment of Transportation Problems by Decomposition, J. SIAM, Vol. 10, 1962, 35–48zbMATHGoogle Scholar
  42. 42.
    Williams, A. C.: A Stochastic Transportation Problem, Oper. Res., Vol. 11, 1963, 759–770zbMATHGoogle Scholar
  43. 43.
    Iri, M.: A New Method for Solving Transportation Network Problems, J. Oper. Res. Soc. of Japan, Vol. 3, 1960, 27–87Google Scholar
  44. 44.
    Witten, P. amd Zimmermann, H.-G.: Stochastische Transportprobleme, Zeitschr. für Oper. Res., Vol. 22, 1978, 55–68MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Hitchcock, F. L.: The Distribution of a Product from Several Sources to Numerous Locations, J. Math. Phys., Vol. 20, 1941, 224–230MathSciNetGoogle Scholar
  46. 46.
    Houthakker, H. S.: On the Numerical Solution of the Transportation Problem, Operations Research, Vol. 3, 1945, 210–214MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wilson, D.: A Mean Cost Approximation for Transportation Problems, with Stochastic Demand, Nay. Res. Logist. Quart., Vol. 22, 1975, 181–187zbMATHCrossRefGoogle Scholar
  48. 48.
    Lindenberg, W.: Minimierung der Fahrzeuganzahl bei Transportproblemen, in VIII.1. 1–57, 1985Google Scholar
  49. 49.
    Paulik, R.: Tourenplanung im Dialog, in VIII.1. 1–57, 1985Google Scholar
  50. 50.
    Pierick, K. und Wiegand, K. D.: Aufbau und Anwendung von Arbeitshilfen, Entscheidungshilfen und Optimierungshilfen im Verkehr, in VIII.1. 1–57, 1985Google Scholar
  51. 51.
    Schlueter, E.: Heuristisches Verfahren zur Optimierung der Fahrzeugumläufe im öffentl. Personennahverkehr, in VIII.1. 1–57, 1985Google Scholar
  52. 52.
    Hentschel, D. und Wiegand, K. D.: Fahrplangestaltung und Dienstplangestaltung im öffentlichen Personennahverkehr, unterstützt durch grafische Dialogtechnik, in VIII.1. 1–57, 1985Google Scholar
  53. 53.
    Rommelfanger, H.: Zur Lösung linearer Verkehrsoptimierungssysteme mit Hilfe der Fuzzy-Set Theory, in VIII.1. 1–57, 1985Google Scholar
  54. 54.
    Junginger, W.: Notwendige und hinreichende Bedingungen für die Lösung mehrdimensionaler Transportproblem, in VIII.1. 1–57, 1981Google Scholar
  55. 55.
    Junginger, W.: Klassifikation der mehrdimensionalen Transportproblem, in VIII.1. 1–58, 1980Google Scholar
  56. 56.
    Oheigeartaigh, M.: A Fuzzy Transportation Algorithm, Fuzzy Sets and Systems, Vol. 8, No. 3, 1982, 235–244MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Koopmans, T. C. (Ed.): Activity Analysis of Production Allocation, Wiley, New York, 1951zbMATHGoogle Scholar
  58. 58.
    Dantzig, G. B.: Application of the Simplex-Method to a Transportation Problem, in VII. 09–57, 1951Google Scholar
  59. 59.
    Ford, L. R. and Fulkerson, D. R.: Solving the Transportation Problem, Mgmt. Sci., Vol. 3, 1956, 24–32Google Scholar
  60. 60.
    Ford, L. R. and Fulkerson, D. R.: Flows in Networks, Princetion University Press, Princeton, New Jersey, 1962Google Scholar
  61. 61.
    Bradley, G. H.: Survey of Deterministic Networks, AIIE Trans., Vol. 7, 1975, 222–234MathSciNetCrossRefGoogle Scholar
  62. 62.
    Jensen, P. A. und Barnes, J. W.: Network Flow Programming, Wiley, New York, 1980zbMATHGoogle Scholar
  63. 63.
    Glover, F. and Klingman, D.: Real World Applications of Network Problems and Breakthroughs in Solving Them Efficiently, Research Report CC5159, Center for Cybernetics Studies, Univ. of Texas, Austin, 1974Google Scholar
  64. 64.
    Herman, R. (Ed.): Theory of Traffic Flow, Elsevier, Amsterdam, 1961Google Scholar
  65. 65.
    Charnes, A. and Cooper, W. W.: Multicopy Traffic Models, in VII. 9, 64–1961Google Scholar
  66. 66.
    Carbon, A.: On a Three-Dimensional Transportation Problem, Rev. Roum. Math. Purse et Appl., Vol. 11, No. 1, 1966, 57–75Google Scholar
  67. 67.
    Orden, A.: The Transshipment Problem, Mgmt. Sci., Vol. 2, 1956, 276–285MathSciNetzbMATHGoogle Scholar
  68. 68.
    Kopfer, H.: Enumerationsverfahren zur exakten Lösung KVO-Optimierungsproblems im gewerbichen Gueterfernverkehr, in VIII.1. 1–57, 1985, 191–198Google Scholar
  69. 69.
    Domschke, W.: Logistik-Transport, München und Wien, 1981Google Scholar
  70. 70.
    Krolak, P., Felts, W. and Nelson, J.: A Man-Machine Approach Toward Solving the Generalized Truck-Dispatching Problem, Transp. Sci., Vol. 6, 1972, 149–170Google Scholar
  71. 71.
    Matthaeus, F.: Tourenplanung-Verfahren zur Einsatzdisposition von Fuhrparks, Darmstadt, 1978Google Scholar
  72. 72.
    Marsten, R. and Shepardson, F.: Exact Solution of Crew Scheduling Problems Using the Set Partitioning Model—Recent Successful Applications, Networks, Vol. 11, 1981, 165–177CrossRefGoogle Scholar
  73. 73.
    Baker, E. and Fisher, M.: Computational Results for Very Large Air Crew Scheduling Problems, OMEGA, Vol. 9, No. 6, 1981, 613–618CrossRefGoogle Scholar
  74. 74.
    Paessens, H.: Tourenplanung bei der regionalen Hausmuellentsorgung, Diss., Nr. 26 der Schriftenreihe des Instituts für Siedlungswasserwirtschaft der Universität Karlsruhe, 1981Google Scholar
  75. 75.
    Weuthen, H.-K.: Tourenplanung—Lösungsverfahren für Mehrdepotprobleme, Diss., Universität Karlsruhe, 1983Google Scholar
  76. 76.
    Derigs, U. und Hagberg, B.: Ein iterativer Lösungsansatz für das Rostering Problem mittels optimaler Zuordnungen, in VIII.1. 1–57, 1985, 417–420Google Scholar
  77. 77.
    Paessens, H.: Savings Algorithm for the Vehicle Routing Problem, Eur. J. Oper. Res., Vol. 34, No. 3, 1988, 336–344zbMATHCrossRefGoogle Scholar
  78. 78.
    Laporte, G., Norbert, Y., and Taillefer, S.: Solving a Family of Multi-Depot Vehicle Routing and Location-Routing Problems, Transp. Sci., Vol. 22, No. 3, 1988, 161–172MathSciNetzbMATHGoogle Scholar
  79. 79.
    Christofides, N. and Eilon, S.: An Algorithm for the Vehicle-Dispatching Problem, Oper. Res. Quart., Vol. 20, 1969, 309Google Scholar
  80. 80.
    Christofides, N. and Eilon, S.: Expected Distances in Distribution Problems, Oper. Res. Quart., Vol. 20, 1969, 437Google Scholar
  81. 81.
    Carpaneto, G., Dell ‘Amico, M., Fischetti, M., and Toth, P.: A Branch-and-Bound Algorithm for the Multiple Depot Vehicle Scheduling Problem, to appear in NetworksGoogle Scholar
  82. 82.
    Ali, A. I., Kennington, J. and Shetty, B.: Equal Flow Problem, Eur. J. Oper. Res., Vol. 36, No. 1, 1988, 107–115MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Golden, B. L. and Assad, A. A. (Eds.): Vehicle Routing-Methods and Studies, North-Holland, Amsterdam, 1988zbMATHGoogle Scholar
  84. 84.
    Magnanti, T. L. and Wong, R. T.: Network Design and Transp. Planning-Models and Algorithms, Transp. Sci., Vol. 18, 1984, 1–55Google Scholar
  85. 85.
    Meyer, R. R.: Network Optimization, in VIII.1. 1–92, 1984, 125–139Google Scholar
  86. 86.
    Steenbrink, P. A.: Optimiz. of Transp. Networks, Wiley, London, 1974Google Scholar
  87. 87.
    Koopmans, T. C.: Optimum Utilization of the Transportation System, Econometrica, Vol. 17, 1949, 3–4MathSciNetGoogle Scholar
  88. 88.
    Simmonard, M. and Hadley, G.: Maximum Number of Iterations in the Transportation Problem, Nay. Res. Logist. Quart., Vol. 6, 1959, 125–129CrossRefGoogle Scholar
  89. 89.
    Bradley, G. H., Brown, C. G. and Graves, G. W.: Design and Implementation of Large Scale Primal Transshipment Algorithms, Mnagement Science, Vol. 24, 1977, 1–34zbMATHCrossRefGoogle Scholar
  90. 90.
    Rockafellar, R. T.: Network Flows and Monotropic Optimization, Wiley, New York, 1984zbMATHGoogle Scholar
  91. 91.
    Appa, G. M.: The Transportation Problem and its Variants, Oper. Res., Quart., Vol. 24, 1973, 79–99MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Beasley, J. E.: Route First-Cluster Second, Methods for Vehicle Routing, OMEGA, Vol. 11, 1983, 403–408CrossRefGoogle Scholar
  93. 93.
    Mc Closkey, J. F. and Hanssmann, F.: An Analysis of Stewardess Requirements and Scheduling for a Major Airline, Nay. Res. Logist Quart., Vol. 4, 1957, 183–192CrossRefGoogle Scholar
  94. 94.
    Golden, B. L. and Skiscim, C. C.: Using Simulated Annealing to Solve Routing and Location Problems, Nay. Res. Logist. Quart., Vol. 33, 1986, 261–279MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Derigs, U.: Ganzzahlige Programmierung—Methoden zur Lösung des Bottleneck Transportproblems, in VIII.1. 1–56, 1979Google Scholar
  96. 96.
    Magnanti, T. L. and Golden, B. L.: Network Optimization, Wiley, New York, 1985Google Scholar
  97. 97.
    Watson-Gandy, C. and Foulds, L. R.: The Vehicle Scheduling Problem—A Survey, The New Zealand Oper. Res., Vol. 9, No. 2 1981, 73–92MathSciNetGoogle Scholar
  98. 98.
    Golden, B. L., Magnanti, T. L., and Nguyen, H.: Implementing Vehicle Routing Algorithms, M. I. T. Oper. Res. Center Techn. Report No. 115, 1975Google Scholar
  99. 99.
    Beale, E. M. L.: Two Transportation Problems, in VIII.1. 1–129, 1963, 780–788Google Scholar
  100. 100.
    Foster, B. A. and Ryan, D. M.: An Integer Programming Approach to the Vehicle Scheduling Problem, Oper. Res. Quart., Vol. 27, 1976, 367–384MathSciNetzbMATHGoogle Scholar
  101. 101.
    Rubin, J.: A Technique for the Solution of Massive Set Covering Problems with Application to Airline Crew Scheduling, Transp. Sci., 1973, 33–48Google Scholar
  102. 102.
    Laporte, G. and Nobert, Y.: Exact Algorithms for the Vehicle Routing Problem, in VII. 19–169, 1987, 147–184MathSciNetGoogle Scholar
  103. 103.
    Assad, A. A.: Multicommodity Network Flows—A Survey, Networks, Vol. 8, 1978, 37–91MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Kennington, J.: Multicommodity Flows—A State-of-the-Art Survey of Linear Models and Solution Techniques, Oper. Res., Vol. 26, 1978, 209–236MathSciNetzbMATHGoogle Scholar
  105. 105.
    Magnanti, T. L.: Combin. Optimiz. and Vehicle Fleet Planning—Perspectives and Prospects, Networks Vol. 11, 1981, 179–214MathSciNetCrossRefGoogle Scholar
  106. 106.
    Lenstra, J. K. and Rinnoy Kan, A. H. G.: Complexity of Vehicle Routing and Scheduling Problems, Networks, Vol. 11, 1981, 221–228CrossRefGoogle Scholar
  107. 107.
    Shetty, B.: A Primal Simplex Specialization for the Equal Flow Problem. IIE Trans., Vol. 22, No. 1, 1990, 24–30CrossRefGoogle Scholar
  108. 108.
    Desrochers, M., Lenstra, J. K., and Savelsberg, M. W. P.: A Classfication Scheme for Vehicle Scheduling Problems, Eur. J. Oper. Res., Vol. 46, No. 3, 1990, 322–332zbMATHCrossRefGoogle Scholar
  109. 109.
    Gass, S. I.: On Solving the Transportation Problem, J. Oper. Res. Soc., Vol. 41, No. 4, 1990, 291–297zbMATHGoogle Scholar
  110. 110.
    Waters, C. D. J.: Expert Systems for Vehicle Scheduling, J. Oper. Res. Soc., Vol. 41, No. 6, 1990, 505–515Google Scholar
  111. 111.
    Golden, B. L. and Assad, A. A.: Perspectives in Vehicle Routing-Exciting New Developments, Oper. Res., Vol. 34, 1986, 803–810Google Scholar
  112. 112.
    Bodin, L., Golden, B. L., Assad, A. A., and Ball, M.: Routing and Scheduling of Vehicles and Crews—the State of the Art, Comp. and Oper. Res., Vol. 10, 1983, 69–211MathSciNetGoogle Scholar
  113. 113.
    Schrage, L.: Formulation and Structure of More Complex/Realistic Routing and Scheduling Problems, Networks, Vol. 11, 1981, 229–232CrossRefGoogle Scholar
  114. 114.
    Solomon, M. M.: Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints, Oper. Res., Vol. 35, 1987, 254–265zbMATHGoogle Scholar
  115. 115.
    Charnes, A. and Cooper, W. W.: The Stepping-Stone Method for Explaining Linear Programming Calculations in Transportation Problems, Mgmt. Sci., Vol. 1, 1954, 49–69MathSciNetzbMATHGoogle Scholar

VII.10 Distributionsplanung

  1. 1.
    Christofides, N.: Uses of a Vehicle Routing and Scheduling System in Strategic Distribution Planning, in X-47, 1986Google Scholar
  2. 2.
    Kearney, A. T.: Improving Productivity in Physical Distribution, Report Undertaken for CPMD, London, 1980Google Scholar
  3. 3.
    Bloech, J. und Ihde, G.-B.: Betriebliche Distributionsplanung-Zur Optimierung logistischer Prozesse, Physica, Würzburg, 1972Google Scholar
  4. 4.
    Maris, T. G., Wakefield, G. W., Johnson, E. L., and Spielberg, K.: On a Production Allocation and Distribution Problem, Management Science, Vol. 24, No. 15, 1978, 1622–1630CrossRefGoogle Scholar
  5. 5.
    Farrell, J.: Physical Distribution Case Studies, Boston, 1973Google Scholar
  6. 6.
    Hall, B.: Abstimmung von Bestellpolitiken der Läger eines mehrstufigen Distributionssystems zur Festlegung der notwendigen mittelfristigen Kapazitäten, in VIII.1. 1–57, 1985Google Scholar
  7. 7.
    Glover, F., Jones, G., Karney, D., Klingman, D., and Mote, J.: An Integrated Production, Distribution and Inventory Planning System, Interfaces, Vol. 9, 1979, 21–35CrossRefGoogle Scholar
  8. 8.
    Geoffrion, A. M. and Graves, G. W.: Multicommodity Distribution System Design by Bender’s Decomposition, Mgmt. Sci., Vol. 20, No. 5, 1974, 822–844MathSciNetzbMATHGoogle Scholar
  9. 9.
    Eilon, S., Waston-Gandy, C. D. T. and Christofides, N.: Distribution Management, Griffin, London, 1971Google Scholar
  10. 10.
    Bookbinder, J. H.and Reece, K. E.: Vehicle Routing Considerations in Distribution System Design, Eur. J. Oper. Res., Vol. 37, No. 2, 1988, 204–213MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Van Roy, T. J. and Gelders, L.: Solving a Distribution Problem with Side Constraints, Eur. J. of Oper. Res., Vol. 6, No. 1, 1981, 61–66zbMATHCrossRefGoogle Scholar
  12. 12.
    Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P., Mack, R. G., and Prutzman, P. J.: Improving the Distribut. of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer, Interfaces, Vol. 13, No. 6, 1983, 4–23CrossRefGoogle Scholar
  13. 13.
    Geoffrion, A. M.: A Guide to Computer-Assisted Methods for Distribution Systems Planning, Sloan Mgmt. Rev., Vol. 16, 1975, 17–41Google Scholar
  14. 14.
    Eiselt, H. A. and Laporte, G.: Integrated Planning in Distribution Systems, Intern. J. of Physical Distr. and Mater. Mgmt. (UK), Vol. 19, No. 4, 1989, 14–19Google Scholar

VII.11 Ersatzteilplanung

  1. 1.
    Richter, D. M.: Ausfalldichteverteilung Determiniert Langfristige Bedarfsschwankungen an Ersatzteilen und Instandhaltungsbelastungen, Maschinenbautechnik, Vol. 34, No. 9, 1985, 391–395Google Scholar
  2. 2.
    Mitchell, L. B.: Spare Parts Inventories, Plant Eng. (Barrington, 111.) Vol. 41, No. 10, 1978, 44–48Google Scholar
  3. 3.
    Kohlas, J.: Ersatzteilbemessung für reparierbare Geräte—Grund—legende Modelle und Verfahren, in VI11.1. 1–55, 1981Google Scholar
  4. 4.
    Kohlas, J. and Pasquier, J.: Optimization of Spares Parts for Hierarchically Decomposable Systems, in VIIL1. 1–55, 1981Google Scholar
  5. 5.
    Hofmann, H. W.: Optimale Ersatzteilausstattung bie der Einfuehrungneuer bzw. Ausphasung alter Waffensysteme, in VIII.1. 1–58, 1980Google Scholar
  6. 6.
    Cohen, M. A., Kleindorfer, P. R., and Lee, H. L.: Near-Optimal Service Constrained Stocking Policies for Spare Parts, Oper. Res., Vol. 37, No. 1, 1989, 104–117MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bartakke, M. N.: A Method of Spare Parts Inventory Planning, OMEGA, Vol. 9, 1981, 51–58CrossRefGoogle Scholar
  8. 8.
    Cohen, M. A., Kleindorfer, P. R., and Lee, H. L.: Optimal Stocking Policies for Low-Usage Items Multi-Echelon Inventory Systems, Nay. Res. Log. Quart., Vol. 33, 1986, 17–38MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Schaeffer, M.: Inventory for Low-Demand Rate Reparable Items, Mgmt. Sci., Vol. 29, 1983, 1062–1068Google Scholar
  10. 10.
    Hadley, G. and Whitin, T. M.: Analysis of Inventory Systems, Prentice Hall, Englewood Cliffs, N. J., 1963Google Scholar
  11. 11.
    Dushessi, P., Tayi, G. K., and Levy, J. B.: A Conceptual Approach for Managing of Spare Parts, Int. J. Phys. Distr. and Mater. Mgmt., Vol. 18, No. 5, 1988, 8–15Google Scholar
  12. 12.
    Petrovic, R., Senborn, A., and Vujosevic, M.: A New Adaptive Algorithm for Determination of Stocks in Spare Parts Inventory Systems, Eng. Costs and Prod. Econ., Vol. 15, 1989, 405–410CrossRefGoogle Scholar
  13. 13.
    Cohen, M., Kamesan, P. V., and Kleindorfer, P. L.: Optimizer—IBM’s Multiechelon Inventory System for Managing Service Logistics, Interfaces, Vol. 20, No. 1, 1990, 65–82CrossRefGoogle Scholar
  14. 14.
    Kostic, S. and Pendic, Z.: Optimization of Spare Parts in a Multilevel Maintenance System, Eng. Costs and Prod. Econ., Vol. 20, No. 1, 1990, 93–99CrossRefGoogle Scholar

VII.12 Verschnittoptimierung

  1. 1.
    Hinxman, A. I.: The Trim Loss Assortment Problems—A Survey, Eur. J. of Oper. Res., Vol. 5, No. 1, 1980, 8–18MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Farley, A.: Trim Loss Pattern Rearrangement and its Relevance to the Flat-Glass Industry, Eur. J. Oper. Res., Vol. 14, No. 4, 1983Google Scholar
  3. 3.
    Farley, A.: Note on Modifying a Two-Dimensional Trim-Loss Algorithm to Deal with Cutting Restrictions, Eur. J. Oper. Res., Vol. 14, No. 4, 1983Google Scholar
  4. 4.
    Heim, W.: Eine Näherungslösung für ein spezielles zweidimensionales Verschnittproblem, Ablauf-und Planungsforschung, Vol. 12, Heft 1, 1971Google Scholar
  5. 5.
    Gilmore, P. C. and Gomory, R. E.: A Linear Programming Approach to the Cutting Stock Problem—Part I, Oper. Res., Vol. 9, 1961Google Scholar
  6. 6.
    Gilmore, P. C. and Gomory, R. E.: A Linear Programming Approach to the Cutting Stock Problem—Part II, Oper. Res., Vol. 11, 1963Google Scholar
  7. 7.
    Gilmore, P. C. and Gomory, R. E.: Multi-Stage Cutting Stock Problems of Two and More Dimensions, Oper. Res., Vol. 13, 1965Google Scholar
  8. 8.
    Gilmore, P. C. and Gomory, R. E.: The Theory and Computation of Knapsack Functions, Oper. Res., Vol. 14, No. 6, 1966Google Scholar
  9. 9.
    Kortanek, K. and Sodaro, D.: A Generatized Network Model for Three-Dimensional Cutting Stock Problems and New Problems and New Product Analysis, The Journal of Ind. Eng., Nov. 1966, 572–576Google Scholar
  10. 10.
    Riemer, W. et al.: On-Line-Optimierung für den Zuschnitt in der Textil-und Bekleidungsindustrie (TRIGEMA, Burladingen), IBM Nachrichten, Vol. 27, Heft 237, 1977Google Scholar
  11. 11.
    Hahn, S. G.: On the Optimal Cutting of Defective Glass Sheets, Oper. Res., Vol. 16, 1968, 1100–1114Google Scholar
  12. 12.
    Beasley, J. E.: Algorithms for Unconstrained Two-Dimensional Guillotine Cutting, J. of the Oper. Res. Soc., Vol. 36, No. 4, 1985, 297–306MathSciNetzbMATHGoogle Scholar
  13. 13.
    Herz, J. C.: A Recursive Computing Procedure for Two-Dimensional Cutting Stock, IBM J. of Res. and Dev., Vol. 16, 1972, 462–469MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Christofides, N. and Whitlock, C.: An Algorithm for Two-Dimensional Cutting Problems, Oper. Res., Vol. 25, No. 1, 1977, 30–44zbMATHGoogle Scholar
  15. 15.
    Abel, D., Dyskhoff, H., Gal, T., and Kruse, H. J.: Trim Loss and Related Problems, OMEGA, Vol. 13, 1985, 59–72CrossRefGoogle Scholar
  16. 16.
    Wang, P. Y.: Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems, Oper. Res., Vol. 31, 1983, 573–586zbMATHGoogle Scholar
  17. 17.
    Adamowicz, M. and Albano, A.: A Solution of the Rectangular Cutting Stock Problem, IEEE Trans. Syst. Man Cybern., SMC-6, No. 4, 1976, 302–310Google Scholar
  18. 18.
    Sumichrast, R. T.: New Cutting-Stock Heuristics for Scheduling Production, Comput. Oper. Res., Vol. 13, No. 4, 1986, 403–410CrossRefGoogle Scholar
  19. 19.
    Eisemann, K.: The Trim Problem, Mgmt. Sci., Vol. 3, 1957, 279–284MathSciNetzbMATHGoogle Scholar
  20. 20.
    Art, R. C. Jr.: An Approach to the Two-dimensional Irregular Cutting Stock Problem, IBM Cambridge Scientific Center, Report 36. Y08, Cambridge, Massachusetts, 1966Google Scholar
  21. 21.
    Waescher, G., Carow, P. und Müller, H.: Ein flexibles Lösungsverf. für Zuscheneideprobleme in einem Kaltwazwerk, in VIII.1. 1–57, 1985Google Scholar
  22. 22.
    Madsen, O. B. G.: Application of Travelling-Salesman Routines to Solve Pattern-Allocation Problems in the Glass Industry, J. Oper. Res. Soc., Vol. 39, No. 3, 1988, 249–256zbMATHGoogle Scholar
  23. 23.
    Wolfson, M. L.: Selecting Best Lengths to Stock, Oper. Res., Vol. 13, No. 4, 1965, 570–585Google Scholar
  24. 24.
    Wig, M. K.: Diophantine Programming and the Stock Cutting Problem, Ph.D. Thesis, North Carolina State Univ., Raleigh, N. C., 1970Google Scholar
  25. 25.
    Elmaghraby, S. E. and Wig. M. K.: On the Treatment of Stock Cutting Problems as Diophantine Programs, North Carolina State Univ. and Corning Glass Res. Center, Report No. 61, May 11, 1970Google Scholar
  26. 26.
    Reith,P. F.: The Trimproblem, IBM Report, Amsterdam, 1962Google Scholar
  27. 27.
    Farley, A. A.: Mathematical Programming Models for Cutting Stock Problems in the Clothing Industry, J. Oper. Res., Vol. 39, No. 1, 1988, 41–53Google Scholar
  28. 28.
    Vasko, F. J., Wolf, F. E., and Stott, K. L.: Practical Solution to a Fuzzy Two-Dimensional Cutting-Stock Problem, Fuzzy Sets and Systems, Vol. 29, No. 3, 1989, 259–275MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dowsland, K. A.: Two-Dimensional Rectangular Packing, M.Sc. Thesis, Department of Mgmt. Sci., Univ. of Wales, Swansea, 1982Google Scholar
  30. 30.
    Albano, A. and Orsini, R.: A Heuristic Solution of the Rectangular Cutting Stock Problem, Comput. J., Vol. 23, No. 4, 1980Google Scholar
  31. 31.
    Beasley, J. E.: Bounds for Two-Dimensional Cutting, J. Oper. Res. Soc., Vol. 36, No. 1, 1985, 71–74zbMATHGoogle Scholar
  32. 32.
    Chambers, M. L. and Dyson, R. G.: The Cutting Stock Problem in the Flat Glass Industry—Selection of Stock Sizes, Oper. Res. Quart., Vol. 27, No. 4, 1976, 949–957Google Scholar
  33. 33.
    Diegel, A. and Bocker, H. J.: Optimal Dimensions of Virgin Stock in Cutting Glass to Order, Dec. Sci., Vol. 15, No. 2, 1984, 260–274Google Scholar
  34. 34.
    Israni, S. and Sanders, J.: Two-Dimensional Cutting Stock Problem Research—A Review and a New Rectangular Layout Algorithm, J. Manuf. Systems, Vol. 1, No. 2, 1982Google Scholar
  35. 35.
    Smithin, T. and Harrison, P.: The Third Dimension of Two-Dimensional Cutting, OMEGA, Vol. 10, No. 1, 1982, 81–87CrossRefGoogle Scholar
  36. 36.
    Biro, M. and Boros, E.: Network Flows and Non-Guillotine Cutting Patterns, Europ, J. Oper. Res., Vol. 16, 1984, 215–221MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Maak, H.: Zweidimensionales Verschnittproblem, IBM Form No. 9.7.804, Sindelfingen, 1963Google Scholar
  38. 38.
    Goetz, H., Littger, K. und Zur Steege, R.: TRIM—Ein Verfahren zur Lösung des zweidimensionalen Verschnittproblems und sein Einsatz bei der Flachglas AG DELOG—DETAG, Wernberg/Obpf., Sonderdruck der IBM Nachrichten, 1972Google Scholar
  39. 39.
    Pierce, J. F.: On the Solution of Integer Cutting Stock Problems by Combinatorial Programming, IBM Cambridge Scientific Center, Technical Report 36Y02, May 1966Google Scholar
  40. 40.
    Daniels, J. J. and Ghandforoush, P.: An Improved Algorithm for the Non-Guillotin Constrained Cutting Stock Problem, J. Oper. Res. Soc., Vol. 41, No. 2, 1990, 141–149zbMATHGoogle Scholar
  41. 41.
    Vasko, F. J.: A Computational Improvement to Wang’s Two Dimensional Cutting Stock Algorithm, Computers and Industrial Engineering, Vol. 16, No. 1, 1989, 109–115MathSciNetCrossRefGoogle Scholar
  42. 42.
    Dagli, C. H.: Knowledge Based System for Cutting Stock Problems, Eur. J. Oper. Res., Vol. 44, No. 2, 1990, 160–166zbMATHCrossRefGoogle Scholar

VII.13 Energieversorgungsunternehmen

  1. 1.
    Steinbauer, E., Muschick, A., Sillaber, A., Harhammer, P., Strobl, H. und Haschka, H.: Kraftwerkseinsatzoptimierung, Oesterr. Zeitschrift für Elektrizitätswirtschaft, Jg. 38, Heft I, Januar 1985Google Scholar
  2. 2.
    Dakin, R. J.: Application of Mathematical Programming Techniques to Cost Optimization in Power-Generating Systems, Techn. Report 19, Basser Computing Dept., School of Physiscs, Univ. of Sydney, 1961Google Scholar
  3. 3.
    Edelmann, H. und Theilsiefje, K.: Optimaler Verbundbetrieb in der elektrischen Energieversorgung, Springer, Berlin, 1974CrossRefGoogle Scholar
  4. 4.
    Arnoff, E. L. and Chambers, J. C.: On the Determination of Optimum Reserve Generation Capacity in an Electric Utility System, Oper. Res., Vol. 4, No. 4, 1956Google Scholar
  5. 5.
    Rohde, F. G. and Zoller, E. Ch.: Mixed-Integer LP-Model for Electric Power System Planning, in Proceedings of the Intern. Conf. on Systems Modelling in Develop. Countries, Asian Institute of Technology, Bangkok, May 1978, 571–587Google Scholar
  6. 6.
    Garver, L. L.: Power Scheduling by Integer Programming, IEEE Trans. Power Apparatus and Systems, Vol. 81, 1963, 730–735Google Scholar
  7. 7.
    Fanshel, S. and Lynes, E. S.: Economic Power Generation Using Linear Programming, IEEE Trans. Power App. Syst., Vol. 83, 1964, 347–356CrossRefGoogle Scholar
  8. 8.
    Van den Bosch, P. P. J., and Lootsma, F. A.: Scheduling of Power Generation Via Large-Scale Nonlinear Optimization, J. Optim. Theory Appl., Vol. 55, No. 2, 1987, 313–326MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Steinbauer, E.: Suche nach optimalen Lösungen in der Energiewirtschaft gestern, heute und für morgen, Oesterreichische Zeitschrift für Elektrizitätswirtschaft, Heft 2, 1981, 32–42Google Scholar
  10. 10.
    Harhammer, P. G.: Wisrtschaftliche Lastaufteilung auf Basis der gemischt ganzzahligen Planungsrechnung, Oesterreichische Zeitschr. für Elektrizitätswirtschaft, Heft 3, 1976, 87–94Google Scholar
  11. 11.
    Habibollazadeh, H.: Optimal Short-Term Operation Planning of Hydroelectric Power Systems, Research Report of the Royal Insitute of Technology, Stockholm, 1983Google Scholar
  12. 12.
    Tomlin, J. A.: Special Ordered Sets and an Application to Gas Supply Operations, Math. Progr., Vol. 42, No. 1, 1988, 69–84MathSciNetCrossRefGoogle Scholar
  13. 14.
    Ramakrishnan, H. V.: Large Scale Energy System Planning Using Quadratic Programming, J. Inst. Eng. India, Part EL, Vol. 68, No. 5, 1988, 170–176MathSciNetGoogle Scholar
  14. 15.
    Bergsman, J.: Electrical Power Systems Planning Using Linear Programming, IEEE Transactions, Vol. MIL-8, No. 2, 1964, 59CrossRefGoogle Scholar
  15. 16.
    Dessiere, F.: The Investment 85 Model of Electricite de France, Mgmt. Sci., Vol. 17, No. 4, 1970, 192Google Scholar
  16. 17.
    Masse, P. and Gibrat, R.: Application of Linear Programming to Investments in Electric Power Ind., Mgmt. Sci., Vol. 3, 1957, 149Google Scholar
  17. 18.
    Turvey, R.: Optimal Pricing and Investment in Electricity Supply, MIT Press, Cambridge, Massachusetts, 1968Google Scholar
  18. 19.
    EI-Abiad, A. H.: Power Systems Analysis and Planning, McGraw-Hill, New York, 1983Google Scholar
  19. 20.
    Carpentier, J.: Optimal Power Flows, Int. J. of Electrical Power and Energy Systems, Vol. 1, 1979, 3–15CrossRefGoogle Scholar
  20. 21.
    Freris, L. L. and Sasson, A. M.: Investigation of the Load Flow Problem, Proceedings of the IEEE, No. 115, 1968, 1459–1470Google Scholar
  21. 22.
    Rashed, A. M. H. and Kelly, D. H.: Optimal Load Flow Solution Using Lagrangian Multipliers and the Hessian Matrix, IEEE Trans. on Power App. and Systems, PAS-93, 1974, 1292–1297Google Scholar
  22. 23.
    Terasawa, Y. and Iwamoto, S.: Optimal Power Flow Solution Using. Fuzzy Mathematical Programming, Electrical Eng. in Japan, Vol. 108, No. 3, 1988, 46–54.CrossRefGoogle Scholar
  23. 24.
    Dahr, S. B.: Power System Long-Range Decision Analysis under Fuzzy Environment, IEEE Trans. Power App. Syst., Vol. PAS-98, 1979, 585Google Scholar
  24. 25.
    Economakos, E.: Application of Fuzzy Concepts to Power Demand Forecasting, IEEE Trans. Syst. Man Cybern., Vol. SMC-9, 1979, 651Google Scholar
  25. 26.
    Evans, G. W., Morin, T. L., and Moskowitz, H.: Multiobjective Energy Generation Planning under Uncertainty, IIE Trans., Vol. 14, 1982, 183–192CrossRefGoogle Scholar
  26. 27.
    Anderson, D.: Models for Determining Least Cost Investments in Electricity Supply, Bell J. Econom. and Mgmt. Sci., Vol. 3, 1972, 267–299CrossRefGoogle Scholar
  27. 28.
    Santos, A. Jr., Franca, P. M., and Said, A.: An Optimization Model for Long-Range Transmission Expansion Planning, IEEE Trans. on Power Systems, Vol. 4, No. 1, 1989Google Scholar
  28. 29.
    Biggs, M. C. and Laughton, M. A.: Optimal Electric Power Scheduling—A Large Nonlinear Programming, Test Problem Solved By Recursive Quadratic Programming, Math. Progr., Vol. 13, 1977, 167–182MathSciNetzbMATHCrossRefGoogle Scholar
  29. 30.
    Rosenthal, R. E.: A Nonlinear Network Flow Algorithm for Maximization of Benefits in a Hydroelectric Power System, Oper. Res., Vol. 29, No. 4, 1981, 763–786.MathSciNetzbMATHGoogle Scholar
  30. 31.
    Wood, A. J. (Ed.): Application of Optimization Methods in Power System Engineering, IEEE, New York, 1976Google Scholar
  31. 32.
    Merrill, H. M.: Power Plant Maintenance Scheduling with Integer Programming, in VII. 13–31, 1976, 44–50Google Scholar
  32. 33.
    Biggs, M. C.: An Approach to the Optimal Scheduling of an Electrical Power System, in VIII.1. 1–109, 1974, 364–380Google Scholar
  33. 34.
    Escudero, L. F.: On Energy Generators Maintenance and Operations Scheduling, IBM Scientific Center, Palo Alto, 1980Google Scholar
  34. 35.
    Werbos, P. J.: Maximizing Long-Term Gas Industry Profits in Two Minutes in Lotus Using Neural Network Methods, IEEE Trans. Syst. Man. Cyber., Vol. 19, No. 2, 1989, 315–333CrossRefGoogle Scholar
  35. 36.
    Friedlander, A., Lyra, C., Tavares, H. and Medina, E. L.: Optimization with Staircase Structure—An Application to Generation Scheduling, Comp. and Oper. Res. Vol. 17, No. 2, 1990, 143–152MathSciNetzbMATHGoogle Scholar
  36. 37.
    Friedlander, A.: Optimization with Staircase Structure in the Constraints (in Portugese), Doctoral Diss., Faculty of Engineering of the State Univ. of Campinas, Brasil, 1986Google Scholar
  37. 38.
    Kok, M.: Conflict Analysis Via Multiple Objective Programming with Experiences in Energy Planning, Thesis, Delft Univ. of Technology, Netherlands, 1986Google Scholar
  38. 39.
    Nabona, N.: Long-Term Hydro-Thermal Coordination of Electr. Generation through Multicommodity Network Flows, in VIII.1. 1–148, 1989Google Scholar
  39. 40.
    Batut, J., Renaud, A., and Sandrin, P.: Daily Scheduling Optimization for Power Generation Units, E. D. F. Bulletin de la Dir. des Etudes et Rech., 1990, No. 2, 13–24Google Scholar

VII.14 Personalplanung

  1. 1.
    Holloran, T. J. and Byrn, J. E.: United Airlines Station Manpower Planning System, Interfaces, Vol. 16, No. 1, 1986Google Scholar
  2. 2.
    Rubin, J.: Manpower Scheduling Model, IBM Cambridge Scientific Center, Report No. G320–2104, 1975Google Scholar
  3. 3.
    Gaballa, A. and Pearce, W.: Telephone Sales Manpower Planning at Quantas, Interfaces, Vol. 9, No. 3, 1979Google Scholar
  4. 4.
    Jarr, K.: Simultane Produktions-und Personalplanung, Zeitschrift für Betriebswirtschaft, Vol. 44, No. 10, 1974, 685–702Google Scholar
  5. 5.
    Grinold, R. C.: Manpower Planning with Uncertain Requirements, Operations Research, Vol. 24, No. 3, 1976, 387–399MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Alan, A., Pritsker, B., Wafters, L. J. and Wolfe, P. M.: Multiproject Scheduling with Limited Resources, A Zero-One Programming Approach, Mgmt. Sci., Vol. 16, No. 1, 1969, 93–108Google Scholar
  7. 7.
    Mize, J. H.: A Heuristic Scheduling Model for Multi-Project Organizations, Ph.D. Thesis, Purdue Univ., 1964Google Scholar
  8. 8.
    Wiest, J. D.: Some Properties of Schedules for Large Projects with Limited Resources, Operations Research, Vol. 12, 1964, 395–418CrossRefGoogle Scholar
  9. 9.
    Wiest, J. D.: A Heuristic Model for Scheduling Large Projects with Limited Resources, Mgmt. Sci., Vol. 13, No. 6, 1967, 359–377Google Scholar
  10. 10.
    Arabeyre, J. P., Feanley, J., Steiger, F. C. and Teather, W.: The Airline Scheduling Problem-A Survey, Trans. Sci., Vol. 3, 1969, 140–163Google Scholar
  11. 11.
    Cavanagh, R. A.: Airline Crew Scheduling, Presented at XII TIMS International Meeting, Kyoto, Japan, July 1975Google Scholar
  12. 12.
    Nicoletti, B.: Autom. Crew Rostering, Trans, Sci., Vol. 9, 1975, 33Google Scholar
  13. 13.
    Doenni, B.: Verfahren für optimale Personalzuordnung, Industrielle Organisation, Vol. 34, No. 6, 1965, 311–331Google Scholar
  14. 14.
    Doenni, B.: optimale Personalzuordnung, industrielle Organisation, Vol. 34, No. 8, 1965, 460–473Google Scholar
  15. 15.
    Dwyer, P. S.: Solution of the Personal Classification Problem with the Method of Optimal Regions, Psychometrika, Vol. 18, No. 1, 1954Google Scholar
  16. 16.
    Weber, W. L.: Manpower Planning in Hierarchical Organizations—A Computer Simulation Approach, Mgmt. Sci., Ser. A, Vol. 18, No. 3, 1971, 119–144Google Scholar
  17. 17.
    Votaw, D. F. Jr.: Methods of Solving Personnel Classification Problems, Psychometrica, Vol. 17, 1952, 255–266zbMATHCrossRefGoogle Scholar
  18. 18.
    Votaw, D. F. Jr.: Personnel Assignment Problem, in VIII.1. 2–45, 1952Google Scholar
  19. 19.
    Van der Bij, H.: Manpower Planning Activities on Mangement Control Level, in VIII.1. 1–57, 1985Google Scholar
  20. 20.
    Soehngen, L.: Modellgesteuerte Bedarfsplanung, Einsatzsteuerung und Kontrolle von Personal bei variabler Arbeitsmenge, in VIII.1. 1–57, 1985, 219–222Google Scholar
  21. 21.
    Vajda, S.: Mathematical Aspects of Manpower Planning, Oper. Res. Quart., Vol. 26, 1975, 527–542zbMATHGoogle Scholar
  22. 22.
    Price, W. L. and Piskor, W. G.: The Application of Goal Programming to Manpower Planning, Information, Vol. 10, 1972, 221–231Google Scholar
  23. 23.
    Lilien, G. L. and Rao, A. G.: A Model for Manpower Management, Management Science, Vol. 21, 1975, 1447–1457CrossRefGoogle Scholar
  24. 24.
    Charnes, A., Cooper, W. W., Niehaus, R. J., and Scholtz, D.: A Model and a Program for Manpower Management and Planning, Graduate School of Ind. Admin., Reprint No. 383, Carnegie Mellon Univ., 1975Google Scholar
  25. 25.
    Davies, G. S.: Structural Control in a Graded Manpower System, Management Science, Vol. 20, 1973, 76–84MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Verhoeven, C. J.: Techniques for Corporate Manpower Planning, Kluwer Nijhoff Publ., 1982Google Scholar
  27. 27.
    Smith, A. R. and Bartolomew, D. J.: Manpower Planning in the United Kingdom—A Historical Review, J. Oper. Res. Soc., Vol. 39, No. 3, 1988, 235–248Google Scholar
  28. 28.
    Venema, M. and Wessels, J.: Systematic Modelling and Model Handling for Manpower Systems, Vol. 4, No. 4, 1988Google Scholar
  29. 29.
    Glover, F. and Mc Millan, C.: The General Employee Scheduling Problem—An Integration of MS and AI, Comput. Oper. Res., Vol. 13, 1986, 563–573CrossRefGoogle Scholar
  30. 30.
    Lawrence, J.: Manpower and Personal Models in Britain, Personn. Rev., Vol. 2, No. 3, 1973, 4–27Google Scholar
  31. 31.
    Martel, A. and Al-Nuaimi, A.: Tactical Manpower Planning Via Progr. under Uncertainty, Oper. Res. Quart., Vol. 24, 1973, 571–585zbMATHGoogle Scholar
  32. 32.
    Drumm, H. J.: Zur Akzeptanz formaler Personalplanungsmethoden-Ergebnisse einer empirischen Untersuchung, in VIII.1. 1–56, 1979Google Scholar
  33. 33.
    Bergold, V.: Personalplanung im Vertriebsbereich mit ganzzahliger linearer Optimierung, in VIII.1. 1–146, 1974Google Scholar

VII.15 Investitions-und Finanzplanung

  1. 1.
    Wilson, R.: Investment Analysis under Uncertainty, Management Science, Vol. 15, No. 12, 1969, 650–664CrossRefGoogle Scholar
  2. 2.
    Peters, L.: Simultane Produktions-und Investitionsplanung mit Hilfe der Portfolio Selection, Duncker and Humblot, 1971Google Scholar
  3. 3.
    Jacob, H.: Neuere Entwicklungen in der Investitionsrechnung, Zeitschrift für Betriebswirtschaft, Vol. 34, No. 8 und 9, 1964, 487–507 und 551–594Google Scholar
  4. 4.
    Zimmermann, W.: Flexible Investitionsplanung mit ganzzahliger lin. Progr., Ablauf und Planungsforschung, Vol. 8, No. 4, 1967, 408–412Google Scholar
  5. 5.
    Hax, H.: Investitions-und Finanzplanung mit Hilfe der linearen Progr., Zeitschr. für betriebsw. Forschung, Vol. 16, 1964, 430–446Google Scholar
  6. 6.
    Albach, H.: Linear Programming als Hilfsmittel betrieblicher Investitionsplanung, Zeitschr. für handelswirtsch. Forschung, Vol. 12, 1960, 526–549Google Scholar
  7. 7.
    Witten, P. und Zimmermann, H.-G.: Zur Eindeutigkeit des interenen Zinsfußes und seiner Bestimmung, Zeitschr. für Betriebswirtschaft, Vol. 47, 1977, 99–114Google Scholar
  8. 8.
    Teichroew, D., Robichek, A., and Montalbano, M.: Mathematical Analysis of Rates of Return under Certainty, Mgmt. Sci., Ser. A, Vol. II, 1965, 395–400Google Scholar
  9. 9.
    Pazner, E. A. and Razin, A.: A Model of Investment under Interest Rate Uncertainty, Intern. Economic Review, Vol. 15, 1974, 798–802MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hirshleifer, J.: Investment, Interest and Capital, Prentice-Hall, Englewood Cliffs, N. J., 1970Google Scholar
  11. 11.
    Bitz, M.: Present Value and Future Value under Uncertainty in the Cost of Capital, Zeitschr. für Oper. Res., Vol. 22, 1978, 25–31MathSciNetzbMATHGoogle Scholar
  12. 12.
    Albach, H.: Investition und Liquidität, Wiebaden, 1962Google Scholar
  13. 13.
    Albach, H.: Risikomanagement und optimales Investitionsbudget, in VIII.1. 1–58, 1980Google Scholar
  14. 14.
    Albach, H.: Wirtschaftlichkeitsrechung bei unsicheren Erwartungen, Westdeutschr Verlag, Köln-Opladen, 1959Google Scholar
  15. 15.
    Eitschberger, B. H.: Investitionsplanung in einem dialoggestützten LP-Modellgenerator, in VIII.1. 1–57, 119Google Scholar
  16. 16.
    Hanuscheck, R.: Flexible Investitionsplanung mit Fuzzy-Zahlungsreireihen, in VIII.1. 1–57, 1985, 120–127Google Scholar
  17. 17.
    Albach, H. (Ed.): Investitionstheorie, Kiepenheuer and Witsch, Köln, 1975Google Scholar
  18. 18.
    Wolf, J.: Lineare Fuzzy-Investitionsmodelle. Die Formulierung und Lösung realitätskonformer Investitionsmodelle durch Verwendung unscharfer Mengen, Diplomarbeit, Fachbereich Wirtschaftswissenschaft, Universität Frankfurt a.M., 1983Google Scholar
  19. 19.
    Ashford, R. W., Berry, R. H., and Dyson, R. G.: Oper. Res. and Financial Management, Eur. J. Oper. Res., Vol. 36, No. 2, 1988, 143–152CrossRefGoogle Scholar
  20. 20.
    Nauss, R. M.: On the Use of Internal Rate of Return in Linear and Integer Progr., Oper. Res. Letters, Vol. 7, No. 6, 1988, 285–289MathSciNetzbMATHGoogle Scholar
  21. 21.
    Naeslund, B. and Whinston, A.: A Model of Multi-Period Investment under Uncertainty, Mgmt. Sci., Vol. 8, No. 2, 1962Google Scholar
  22. 22.
    Wiengartner, H. M.: Criteria for Programming Investment Project Selection, J. Ind. Econ., 1966, 65–76Google Scholar
  23. 23.
    Naylor, T. and Mann, M. (Ed.): Portfolio Planning and Corporate Strategy, Planning Executives Institute, Oxford, 1983Google Scholar
  24. 24.
    Weingartner, H. M.: Mathematical Programming and the Analysis of Capital Budgeting, Prentice-Hall, Englewood-Cliffs, N. J., 1963Google Scholar
  25. 25.
    Weingartner, H. M.: Capital Budgeting of Interrelated Projects, Survey and Synthesis, Mgmt. Sci., Vol. 12, No. 7, 1966, 485–516Google Scholar
  26. 26.
    Langhhunn, D. J.: Quadratic Binary Programming with Application to Capital Budgeting Problems, J. of the Oper. Res. Soc. of America, Vol. 18, 1970, 454–461Google Scholar
  27. 27.
    Weingartner, H. M.: Some New Views on the Payback Period and Capital Budgeting Decisions, Mgmt. Sci., Vol. 15, No. 12, 1969, 595–607Google Scholar
  28. 28.
    Markowitz, H. M.: Porfolio Selection—Efficient Diversification of Investments, Wiley, New York, 1959Google Scholar
  29. 29.
    Markowitz, H. M.: Porfolio Selection, J. of Finance, Vol. 7, 1952Google Scholar
  30. 30.
    Sharpe, W. F.: A Simplified Model for Portfolio Analysis, Management Science, Vol. 9, No. 2, 1963Google Scholar
  31. 31.
    Sharpe, W. F.: A Linear Programming Algorithm for Mutual Fund Portfolio Selection, Mgmt. Sci., Vol. 13, 1967Google Scholar
  32. 32.
    Hanssmann, F.: Operations Research Techniques for Capital Investment, Wiley, New York, 1970Google Scholar
  33. 33.
    Kuellmer, H.: Bankbetriebliche Programmplanung unter Unsicherheit, Gabler, Wiesbaden, 1975Google Scholar
  34. 34.
    Sharpe, W. E.: A Linear Programming Approach for the General Portfolio Selection Problem, J. Financial Quant. Anal., Vol. 6, 1971, 1263–1276CrossRefGoogle Scholar
  35. 35.
    Elton, E. J., Gruber, M. J., and Padberg, M. W.: Simple Criteria for Optimal Portfolio Selection, J. Finance, Vol. 31, 1976, 1341–1357Google Scholar
  36. 36.
    Maier, S. F. and Van der Weide, J. H.: Capital Budgeting in the Decentralized Firm, Mgmt. Sci., Vol. 23, 1976, 433–443zbMATHGoogle Scholar
  37. 37.
    Laux, H.: Flexible Planung des Kapitalbudgets mit Hilfe der Linearen Programmierung, in VII. 15–17, 1975, 411–426Google Scholar
  38. 38.
    Ashford, R. W., Berry, R. H., and Dyson, R. G.: Oper. Res. and Financial Management, Eur. J. Oper. Res., Vol. 36, No. 2, 1988, 143–152CrossRefGoogle Scholar
  39. 39.
    Salkin, G. and Kornbluth, J.: Linear Programming in Financial Planning and Accounting, Haymarket Publishing, London, 1973Google Scholar
  40. 40.
    Srinivason, V.: A Transshipment Model for Cash Management Decisions, Mgmt. Sci., Vol. 20, 1974, 1350–1363Google Scholar
  41. 41.
    Speidell, L. S., Miller, D. H., and Ullman, J. R.: Portfolio Optimization—A Primer, Financial Analysis J., Vol. 45, No. 1, 1989, 22–30CrossRefGoogle Scholar
  42. 42.
    Pang, J. S.: A New and Efficient Algorithm for a Class of Portfolio Selection Problems, Operations Research, Vol. 28, 1980, 754–767MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Elton, E. J. and Gruber, M. J.: Modern Portfolio Theory and Investment Analysis, Wiley, New York, 1981Google Scholar
  44. 44.
    Szego, G. P.: Portfolio Theory, Academic Press, New York, 1980Google Scholar
  45. 45.
    Rosenblatt, M. J.: Generating the Discrete Efficient Frontier to the Capital Budgeting Problem, Oper. Res., Vol. 37, No. 3, 1989, 384–394zbMATHGoogle Scholar
  46. 46.
    Perold, A. F.: Large Scale Portfolio Optimization, Management Science, Vol. 30, 1984, 1143–1160MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Rudd, A. and Rosenberg, B.: Realistic Portfolio Optimization, TIMS Studies Mgmt. Science, Vol. 11, 1979, 21–46Google Scholar
  48. 48.
    Soewen, L. A.: Foreign Exchange Exposure Management—A Portfolio Approach, Sijthoff and Noordhoff, The Netherlands, 1979Google Scholar
  49. 49.
    Sharpe, W. F.: Portfolio Theory and Capital Markets, Mc Graw-Hill, New York, 1970Google Scholar
  50. 50.
    Mao, J. C.: Quantitative Analysis of Financial Decisions, Macmillan, New York, 1969Google Scholar
  51. 51.
    Brealey, R. and Myers, S.: Principles of Corporate Finance, McGraw-Hill, New York, 1981Google Scholar
  52. 52.
    Baum, S., Carlson, R. C., and Jucker, J. V.: Some Problems in Applying the Continuous Portfolio Selection Model to the Discrete Capital Budget Problem, J. Finan. Quant. Anal., 1978, 333–344Google Scholar
  53. 53.
    Rosenblatt, M. J. and Sinuany-Stern, Z.: Generating the Discrete Efficient Frontier to the Capital Budgeting Problem, Oper. Res., Vol. 37, No. 3, 1989, 384–394zbMATHGoogle Scholar
  54. 54.
    Mulvey, J. M.: Nonlinear Network Models in Finance, Adv. Math. Progr. Finan. Plann., 1987, 253–271Google Scholar
  55. 55.
    Teichroew, D., Robichek, a. and Montalbano, M.: Analyse der Kriterien der Investitions-und Finanzplanung bei Sicherheit, in VII. 15–17, 1975, 92–121Google Scholar
  56. 56.
    Weingartner, M. H.: Investitionsrechnung für voneinander abhängige Projekte, in VII. 15–17, 1975, 326–357Google Scholar
  57. 57.
    Morita, H., Ishii, H., and Nishida, T.: Stochastic Linear Knapsack Programming Problem and its Application to a Portfolio Selection Problem, Eur. J. Oper. Res., Vol. 40, No. 3, 1989, 329–336MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Hirshleifer, J.: On the Theory of Optimal Investment Decisions, J. of Political Economy, Vol. 66, No. 4, 1958, 329–352CrossRefGoogle Scholar
  59. 59.
    Hayes, J. W.: Dual Variables in Pure Capital Rationing Linear Programming Formulations, Eng. Econ., Vol. 34, No. 3, 1989, 255–260CrossRefGoogle Scholar
  60. 60.
    Hayes, J. W.: Discount Rates in Linear Pogramming Formulations of the Capital Budgeting Problem, Eng. Econ., Vol. 29, No. 2, 1984, 113–126CrossRefGoogle Scholar
  61. 61.
    Baumol, W. J. and Quandt, R. E.: Investment and Discount Rates Under Capital Budgeting—A Programming Approach, Economic J., Vol. 75, No. 298, 1965, 317–329CrossRefGoogle Scholar
  62. 62.
    Jean, W. H.: Interest Rate-Independent Present Value Rankings, Eng. Econ., Vol. 34, No. 2, 1989, 129–148CrossRefGoogle Scholar
  63. 63.
    Jean, W. H.: On Multiple Rates of Return, J. of Finance, Vol. 23, 1968, 187–191Google Scholar
  64. 64.
    Hertz, D. B.: Risk Analysis in Capital Investment, Harvard Business Reviews, Vol. 42, No. 1, 1964, 95–106Google Scholar
  65. 65.
    Ziemba, W. T. and Vickson, R. G. (Eds.): Stochastic Optimization Models in Finance, Academic Press, New York, 1975zbMATHGoogle Scholar
  66. 66.
    Khaksari, S., Kamath, R., and Grieves, R.: A New Approach to Determining Optimum Portfolio Mix, J. of Portfolio Management., Vol. 15, No. 3, 1989, 43–49CrossRefGoogle Scholar
  67. 67.
    Michaud, R. O.: The Markowitz Optimization Enigma—Is “Optimized” Optimal?, Financial Analysis J., Vol. 45, No. 1, 1989, 31–42CrossRefGoogle Scholar
  68. 68.
    Booth, G. G. et al.: Managing Interest-Rate Risk in Banking Institutions, Eur. J. Oper. Res., Vol. 41, No. 3, 1989, 302–313CrossRefGoogle Scholar

VII.16 Optimierung technischer Produkte

  1. 1.
    Maier, G.: Mathematical Programming Applications to Structural Mechanics—Some Introductory Thoughts, Eng. Struct., Vol. 6, No. 1, Jan. 1984Google Scholar
  2. 2.
    Ahlers, H., Schwartz, B. und Waldmann, J.: Optimierung technischer Produkte und Prozesse, VEB VerlagGoogle Scholar
  3. 3.
    Gallagher, R. H. and Zienkiewicz, O. C. (Editors): Optimum Structural Design, Wiley, New York, 1973zbMATHGoogle Scholar
  4. 4.
    Spillers, W. R.: Iterative Design, North-Holland, Amsterdam und Oxford, 1975zbMATHGoogle Scholar
  5. 5.
    Elpertin, T.: Monte Carlo Structural Optimization in Discrete Variables with Annealing Algorithm, Int. J. Numer. Meth. Eng., Vol. 26, No. 4, 1988, 815–821CrossRefGoogle Scholar
  6. 6.
    Lightner, H. R. and Director, S. W.: Multiple Criterion Optimization for the Design of Electronic Circuits, IEEF Trans. on Circuits and Systems, Vol. 28, 1981, 169–179MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ferris, M. C.: Linear Programming and Minimum Weight Structural Optimization Problems, Master of Philosophy Diss., Univ. of Cambridge, Churchill College, Cambridge, July 1985Google Scholar
  8. 8.
    Brown, C. B. and Yao, J. T. P.: Fuzzy Sets and Structural Engineering, J. of Structural Engineering, Vol. 109, No. 5, 1983Google Scholar
  9. 9.
    Levary, R. R. (Ed.): Engineering Design—Better Results Through Operations Research Methods, North-Holland, Amsterdam, 1988Google Scholar
  10. 10.
    Sandgren, E. and Ragsdell, K M.: On Some Experiments which Delimit the Utility of Nonlinear Programming Methods for Engineering Design, Math. Progr. Study, Vol. 16, 1982, 118–136MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wiebking, R. D.: Deterministic and Stochastic Geometric Programming Models for Optimal Engineering Design Problems in Electric Power Generation and Computer Solutions, Techn. Report TR73LS132, General Electric Company, Schenectady, NY, 1974Google Scholar
  12. 12.
    Buys, J. D. and Kröger, D. G.: Cost-Optimal Design of Dry Cooling Towers Through Mathematical Programming Techniques, J. Heat Transfer Trans. ASME, Vol. 111, No. 2, 1989, 322–327CrossRefGoogle Scholar
  13. 13.
    Adeli, H. and Chompooming, K.: Interactive Optimization of Nonprismatic Girders, Comp. and Struct., Vol. 31, No. 4, 1989, 505–522CrossRefGoogle Scholar
  14. 14.
    Douty, R. T.: Structural Design by Conversational Solution to the Nonlin. Progr. Problem, Comp. and Struct., Vol. 6, 1976, 325–331zbMATHGoogle Scholar
  15. 15.
    Belegundu, A. D. and Arora, J. S.: A Study of Mathematical Programming Methods for Structural Optimization, Part II Numerical Results, Int. J. Num. Meth. Eng., Vol. 21, 1985, 1601–1623MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Belegundu, A. D. and Arora, J. S.: A Study of Mathematical Programming Methods for Structural Optimization, Part I—Theory, Int. J.Num. Meth. Eng., Vol. 21, 1985, 1583–1599MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fox, R. L.: Optimization Methods for Engineering Design, Addison-Wesley, Reading, Mass., 1971Google Scholar
  18. 18.
    Vanderplaats, G. N.: Numerical Optimization Techniques for Engineering Design—With Applications, McGraw-Hill, New York, 1984zbMATHGoogle Scholar
  19. 19.
    Diaz, A. R.: Fuzzy Set Applications in Engineering Optimization—Multilevel Fuzzy Optimization, Michigan State Univ., N89–25216/7/XAB, 1989Google Scholar
  20. 20.
    Haug, E. J. and Arora, J. S.: Applied Optimal Design—Mechanical and Strutural Systems, Wiley, New York, 1979Google Scholar
  21. 21.
    Kothawala, K. S. et al.: Shaping up—Optimization of Structural Designs, Mechnical Engineering, March 1988, 52–55Google Scholar
  22. 22.
    Esping, B. J. D.: The OASIS Structural Optimization System, Computers and Structures, Vol. 23, No. 3, 1986, 365–377MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vanderplaats, G. N. and Sugimoto, H.: A General Purpose Optimization Progr. for Eng. Design, Comp. and Struct., Vol. 24, No. 1, 1986, 13zbMATHCrossRefGoogle Scholar
  24. 24.
    Gödel, H., Schneider, G., and Hörnlein, H.: Aeroelastic Considerations in the Preliminary Design of Aircraft, Advisory Group for Aerospace Research and Development (AGARD), Proceedings of the 56th Structure and Meeting, 1983Google Scholar
  25. 25.
    Osyczka, A.: Multicriteria Optimization in Engineering, Horwood, Chichester, U. K., 1984Google Scholar
  26. 26.
    Jarmai, K.: Design of Economic Steel Structures, Candidate of Sci. Diss., Miskolc, Hungary, 1988Google Scholar
  27. 27.
    Olsen, G. R. and Vanderplaats, G. N.: Method for Nonlinear Optimization with Discrete Design Variables, AIAA J., Vol. 27, No. 11, 1989, 1584–1589CrossRefGoogle Scholar
  28. 28.
    Haftka, R. T.: Integrated Nonlinear Structural Analysis and Design, AIAA J., Vol. 27, No. 11, 1989, 1622–1627CrossRefGoogle Scholar
  29. 29.
    Hedderich, C. P., Kelleher, M. D., and Vanderplaats, G. N.: Design and Optimization of Air-Cooled Heat Exchangers, ASME J. of Heat Transfer, Vol. 104, 1982, 683–690CrossRefGoogle Scholar
  30. 30.
    Banerjee, D. and Shanthakumaran, P.: Application of Numerical Optimization Methods in Helicopter Industry, Vertica, Vol. 13, No. 1, 1989, 17–42Google Scholar
  31. 31.
    Kumar, V., Lee, S.-J., and German, M. D.: Finite Element Design Sensitivity Analysis and its Integration with Numerical Optimization Techniques for Structural Design, Comput. Struct., Vol. 32, No. 3–4, 1989, 883–897zbMATHGoogle Scholar
  32. 32.
    Patnaik, S. N.: Analytical Initial Design for Structural Optimization Via the Intergrated Force Method, Comp. and Struct., Vol. 33, No. 1, 1989, 265–268zbMATHCrossRefGoogle Scholar
  33. 33.
    Vanderplaats, G. N.: Effective Use of Numerical Optimization in Structural Design, Finite Element Analysis and Design, Vol. 6, No. 1, 1989, 97–112zbMATHCrossRefGoogle Scholar
  34. 34.
    Hansen, S. R. and Vanderplaats, G. N.: Approximation Method for Configuration Optimization of Trusses, AIAA J., Vol. 28, No. 1, 1990, 161–168CrossRefGoogle Scholar
  35. 35.
    Kirsch, U.: Optimization Structural Design, Mc Graw-Hill, New York, 1981Google Scholar
  36. 36.
    Kirsch, U. and Taye, S.: Structural Optimization in Design Planes, Comp. and Struct., Vol. 31, No. 6, 1989, 913–920zbMATHCrossRefGoogle Scholar
  37. 37.
    Taye, S.: Approximation Concepts in Optimum Structural Design, Doctoral Thesis, Technion—Israel Institute of Technology, 1987Google Scholar
  38. 38.
    Atrek, E. et al. (Eds.).: New Directions in Optimum Structural Design, Wiley, New York, 1984Google Scholar
  39. 39.
    Kirsch, U.: Approximate Behaviour Models for Optimum Structural Design, in VII. 16–38, 1984Google Scholar
  40. 40.
    Olsen, G. R.: Nonlinear Optimization with Discrete Design Variables, M. S. Thesis, Department of Mechanical and Environmental Engineering, Univ. of California, Santa Barbara, California, 1986Google Scholar
  41. 41.
    Haftka, R. T. and Kamat, M. P.: Elements of Structural Optimization, Martinus Nijhoff, Dordrecht, Netherlands, 1985Google Scholar
  42. 42.
    Siddall, J. N.: Optimal Eng. Design, Marcel Dekker, New York 1982Google Scholar
  43. 43.
    Vecchi, M. P. and Kirkpatrick, S.: Global Wiring by Simulated Annealing, IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. CAD-2, 1983, 215–222Google Scholar
  44. 44.
    Ringertz, U. T.: On Methods for Discrete Structural Optimization, Engineering Optimization, Vol. 13, 1988, 47–64CrossRefGoogle Scholar
  45. 45.
    Rao, S. S.: Multiobjective Optimization of Fuzzy Structural Systems, Int. J. for Num. Meth. in Eng., Vol. 24, No. 6, 1987, 1157–1171zbMATHCrossRefGoogle Scholar
  46. 46.
    Kopp, R., Arfmann, G. H. und Becker, M.: Optimierungsstrategien in der Umformtechnik, Werkstatt und Betrieb, Vol. 122, No. 11, 1989, 939–942Google Scholar
  47. 47.
    Sandgren, E.: Structural Design Optimization for Latitude by Nonlinear Goal Programming, Comp. and Struct., Vol. 33, No. 6, 1989, 1395–1402zbMATHCrossRefGoogle Scholar
  48. 48.
    Thareja, R. R. and Haftka, R. T.: Efficient Single-Level Solution of Hierarchical Problems in Structural Optimization, AIAA J., Vol. 28, No. 3, 1990, 506–514zbMATHCrossRefGoogle Scholar
  49. 49.
    Waston, L. T. and Haftka, R. T.: Modern Homotopy Meth. in Optimization, Comp. Meth. in Appt Mech. and Eng., Vol. 74, 1989, 289–305CrossRefGoogle Scholar
  50. 50.
    Waston, L. T. and Yang, W. H.: Optimal Design by a Homotopy Method, Applicable Anal., Vol. 10, 1980, 275–284MathSciNetCrossRefGoogle Scholar
  51. 51.
    Waston, L. T. and Wang, C. Y.: A Homotopy Method Applied to Elastica Problem, Int. J. Solids and Structures, Vol. 17, 1981, 29–37CrossRefGoogle Scholar
  52. 52.
    Barthelemy, J.-F. M. and Riley, M. F.: Improved Multi-Level Optimization Approach for the Design of Complex Engineering Systems, AIAA J., Vol. 26, 1988, 353–360CrossRefGoogle Scholar
  53. 53.
    Yokoi, T. and Ebihara, D.: Optimal Design Technique for High Speed Single-Sided Linear Induction Motor Using Mathematical Programming Method, IEEE Trans. on Magnetics, Vol. 25, No. 5, 1989, 3596–3598CrossRefGoogle Scholar
  54. 54.
    Vanderplaats, G. N., Yang, Y. J., and Kim, D. S.: Sequential Linearization Method for Multilevel Optimization, AIAA J., Vol. 28, No. 2, 1990, 290–295CrossRefGoogle Scholar
  55. 55.
    Arora, J. S.: Computational Design Optimization—A Review and Future Directions, Structural Safety, Vol. 7, 1990, 131–148CrossRefGoogle Scholar
  56. 56.
    Arora, J. S.: Intr. to Optimum Design, McGraw-Hill, New York, 1989Google Scholar
  57. 57.
    Lee, W. D.: Simulated Annealing Applied to Shipbuilding Design, Neural Networks, Vol. 1, No. 1, 1988, 453Google Scholar
  58. 58.
    Sandgren, E.: Nonlinear Integer and Discrete Programming in Mechanical Design Optimization, ASME Journal of Mechanical Design, Vol. 112, No. 2, 1990, 223–229CrossRefGoogle Scholar
  59. 59.
    Hajela, P.: Genetic Search—An Approach to the Nonconvex Optimization Problem, AIAA Journal, Vol. 28, No. 7, 1990, 1205–1210CrossRefGoogle Scholar
  60. 60.
    Kling, R. M.: Optimization by Simulated Evolution and its Application to Cell Placement, Doctoral Thesis, Univ. of Illinois/Urbana-Champaign, Dept. of Electrical Eng., Urbana, III., 1990Google Scholar
  61. 61.
    Lee, H.: An Application of Integer and Discrete Optimization in Engineering Design, M. S. Thesis, Univ. Missouri-Columbia, 1983Google Scholar

VII.17 Landwirtschaftliche Planung

  1. 1.
    Boles, J. N.: Linear Programming and Farm Management Analysis, J. of Farm Economics, Vol. 37, 1955, 1–24CrossRefGoogle Scholar
  2. 2.
    Clarke, G. B. and Simpson, I. G.: A Theoretical Approach to the Profit Maximization Problems in Farm Management, J. Agric. Economics, Vol. 13, 1959, 150–164Google Scholar
  3. 3.
    Bishop, C. E.: Programming Farm-Nonfarm Allocation of Farm Family Resources, J. of Farm Economics, Vol. 38, No. 2, 1956Google Scholar
  4. 4.
    IBM: Farm Planning with the Acid of LP, IBM Form No. GE20–0334Google Scholar
  5. 5.
    Balm, I. R.: LP Applications in Scottish Agriculture, J. Operations Research Society, Vol. 31, 1980, 387–392Google Scholar
  6. 6.
    Fokkens, B. and Puylaert, M.: A Linear Programming Model for Daily Harvesting Operations at a Large-Scale Grain Farm of the Ijsselmeerpolders Development Authority, J. Oper. Res. Soc., Vol. 32, 1981, 535–548Google Scholar
  7. 7.
    Swart, W., Smith, C. and Holderby, T.: Expansion Planning for a Large Dairy Farm, in VIII.1. 2–70, 1975Google Scholar
  8. 8.
    Glen, J. J.: A Parametric Programming Method for Beef Cattle Ration Formulatation, J. Oper. Res. Society, Vol. 31, 1980, 689–698Google Scholar
  9. 9.
    Louwes, S. L., Boot, J. C. G., and Wage, S.: A Quadratic Programming Approach to the Problem of the Optimal Use of Milk in the Netherlands, J. Farm. Econ., Vol. 45, 1963, 309–317CrossRefGoogle Scholar
  10. 10.
    Rose, C. L.: Management Science in the Developing Countries—A Comparative Approach to Irrigation Feasibility, Mgmt. Sci., Vol. 20, 423–438Google Scholar
  11. 11.
    Fisher, W. D. and Schruben, L. W.: Linear Programming Applied to Feed-Mixing under Different Price Conditions, J. of Farm Economics,Vol. 53, 1953, 471–483CrossRefGoogle Scholar
  12. 12.
    Hutton, R. F. and Mc Alexander, R. H.: A Simplified Feed-Mix Model, J. of Farm Economics, Vol. 39, 1975Google Scholar
  13. 13.
    Waugh, F. V.: The Minimum-Cost Dairy Feed, Journal of Farm Economics, Vol. 33, No. 3, 1951, 299–310CrossRefGoogle Scholar
  14. 14.
    Swanson, E. R.: Solving Minimum-Cost Feed Mix Problems, J. of Farm Economics, Vol. 37, 1955, 135–139CrossRefGoogle Scholar
  15. 15.
    Van de Panne, C.: Minimum Cost Cattle Feed Under Probabilistic Protein Constraints, Mgmt. Sci., Vol. 3, No. 3, 1963Google Scholar
  16. 16.
    Glen, J. J.: Mathematical Models in Farm Planning—A Survey, Operations Research, Vol. 35, No. 5, 1987, 641–666CrossRefGoogle Scholar
  17. 17.
    Glen, J. J.: Mixed-Integer Programming Model for Fertilizer Policy Evaluation, Eur. J. of Oper. Res., Vol. 35, No. 2, 1988, 165–171MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kline, D. E., Bender, D. A., Mc Carl, B. A., and Van Donge, C. E.: Machinery Selection Using Expert System and Linear Programming, Comput. Electron. Agric., Vol. 3, No. 1, 1988, 45–61CrossRefGoogle Scholar
  19. 19.
    Minguez, M., Romero, C., and Domingo, J.: Determining Optimum Fertilizer Combinations Through Goal Programming with Penalty Functions—An Application to Sugar Beet Production in Spain, J. Oper. Res. Soc., Vol. 39, No. 1, 1988, 61–70Google Scholar
  20. 20.
    Tan, L.-P. and Fong, C.-O.: Determination of the Corp Mix of a Rubber Oil Palm Plantation—A Programming Approach, Eur. J. Oper. Res., Vol. 34, No. 3, 1988, 362–371CrossRefGoogle Scholar
  21. 21.
    Glen, J. J.: Least-Cost Rations and Optimal Livestock Feeding Policy, J. Oper. Res. Soc., Vol. 38, No. 9, 1987, 847–851Google Scholar

VII.18 Unternehmensplanung

  1. 1.
    Naylor, T. and Mann, M. (Ed.): Portfolio Planning and Corporate Strategy, Planning Executives Institute, Oxford, 1983Google Scholar
  2. 2.
    Hahn, D. und Taylor, B.: Strategische Unternehmensplanung, Stand und Entwicklungstendenzen, Physica, Würzburg, 1983Google Scholar
  3. 3.
    Schober, F. und Ploetzeneder, H. D. (Ed.): Ökonometrische Modelle und Systeme, Oldenbourg, München, 1978Google Scholar
  4. 4.
    Ploetzeneder, H. D. (Ed.): Computergestützte Unternehmensplanung, SRA, Stuttgart, 1977Google Scholar
  5. 5.
    Geitner, U. W.: Integrierte Unternehmensplanung durch Simulation, Forkel, Wiesbaden, 1984Google Scholar
  6. 6.
    Fraundorfer, K.: Decentralized Planning in Hierarchical Organizations, Diss., Johannes-KepplerUniversität, Linz, 1983Google Scholar
  7. 7.
    Walter, K. D.: Gestaltung und Verwirklichung linearer Modelle zur Unternehmensplanung, Bochum, 1977Google Scholar
  8. 8.
    Forestner, K. und Henn, R.: Die Anwendung ökonomischer Verfahren in der Unternehmensplanung, Zeitschrift für Betriebswirtschaft, Vol. 12, 1956, 700–710Google Scholar
  9. 9.
    Popp, W.: Strategische Planung/Integrierte Gesamtplanung. Zur Anyalyse Strategischer Aspekte mit gemischt-ganzzahliger Progr., in VIII.1. 1–57, 1985Google Scholar
  10. 10.
    Spatz, H.: Computergestützte integrierte Unternehmensplanung bei der Nixdorf Computer AG, in Vííí.1. 1–57, 1985Google Scholar
  11. 11.
    Staehly, P.: Dekompositionsverfahren und Integrierte Planung, in VIII.1. 1–57, 1985, 80–92Google Scholar
  12. 12.
    Ente, W. und Schmidt, R.: Experimente mit nichtlinearen, interdependenten Unternahmensmodellen, in VIII.1. 1–57, 1985Google Scholar
  13. 13.
    Mandl, C.: Konzeption, Realisierung und Einsatz eines Decision Support Systems für die Unternehmensplanung, in VIII.1. 1–57, 1985Google Scholar
  14. 14.
    Von Dobschuetz, L.: Strategische Unternehmensplanung. Strategische Planung und Operations Research, in VIII.1. 1–55, 1981Google Scholar
  15. 15.
    Feindor, R.: Erfahrungen bei der Entwickling eines rechnergestützten Unternehmens-PlanungsSystems, in VIII.1. 1–58, 1980Google Scholar
  16. 16.
    Naylor, T. H. and Thomas, C. (Eds.): Optimization Models for Strategic Planning, North-Holland, Amsterdam, 1984Google Scholar
  17. 17.
    Shapiro, J. F.: Practical Experience with Optimization Models, in VII. 18–16, 1984, 67–78Google Scholar
  18. 18.
    Kohel, K.: Direket und effiziente Ressourcenaufteilung in Unternehmen, Diplomarbeit, Universität Linz, 1984Google Scholar
  19. 19.
    Forgionne, G. A.: Corporate Management Science Activities—An Update, Interfaces, Vol. 13, No. 3, 1983, 20–23CrossRefGoogle Scholar
  20. 20.
    Gessner, P.: Ein integriertes Gesamtmodell eines Lebensversicherungsunternehmens—Ansatz der Unternehmensplanung in der Lebensversicherung, in VIII.1. 1–56, 1979Google Scholar
  21. 21.
    Bisschop, J. and Meeraus, A.: On the Development of a General Modeling System in a Strategic Planning Environment, Math. Progr. Study, Vol. 20, 1982, 1–29CrossRefGoogle Scholar
  22. 22.
    Hammann, P.: Choice of the Organization Structur—A Framework for the Quantitative Analysis of Industrial Centralization/Decentralization Issues, Zeitschr. für Oper. Res., Vol. 20, No. 2, 1976, B17–B35Google Scholar
  23. 23.
    Freihalter, R. und Ullrich, M.: Integrierte Verkaufs-, Produktions-und Investitionsplanung, Zeitschr. für Oper. Res., Vol. 18, No. 2, 1974, B11–B16Google Scholar
  24. 24.
    Mentzel, K. und Scholz, M.: Integrierte Verkaufs-, Produktions-und Investitionsplanung, Ablauf-und Planungsforschung, Vol. 12, No. 1, 1971, 1–15Google Scholar

VII.19 Diverse Anwendungen

  1. 1.
    Tabak, D. and Huo, B. C.: Optimal Control by Mathematical Programming, Prentice Hall, Englewood Cliffs, 1971Google Scholar
  2. 2.
    Simon, J. D. and Azma, H. M.: Exxon Experience with Large Scale Linear and Nonlinear Programming Applications, Comput. Chem. Eng., Vol. 7, No. 5, 1983Google Scholar
  3. 3.
    Lasdon, L. S. and Waren, A. D.: Large Scale Nonlinear Programming, Comput. Chem. Eng., Vol. 7, No. 5, 1983, 594–604Google Scholar
  4. 4.
    Tomlin, J. A.: Large-Scale Mathematical Programming Systems, Comput. Chem. Eng., Vol. 7, No. 5Google Scholar
  5. 5.
    Mole, R. H.: Dynamic Optimization of Vehicle Fleet Size, Oper. Res., Quarterly, Vol. 26, 1975Google Scholar
  6. 6.
    Pang, J.-S.: Methods for Quadratic Programming, Comput. Chem. Eng., Vol. 7, No. 5, 1983Google Scholar
  7. 7.
    Simms, B. W., Lamarre, B. G., Jardine, A. K. S., and Boudreau, A.: Optimal Buy, Operate and Sell Policies for Fleets of Vehicles, Eur. J. Oper. Res., Vol. 15, 1984, 183–195zbMATHCrossRefGoogle Scholar
  8. 8.
    Plane, D. R. and Mc Milian, C.: Discrete Optimization, Integer Programming and Network Analysis for Management Decisions, Prentice-Hall, Englewood Cliffs, New Jersey, 1971Google Scholar
  9. 9.
    Tillmann, F.: Optimization of Systems Reliability, Dekker, New York and Basel, 1980Google Scholar
  10. 10.
    Beightler, C. S. and Phillips, D. T.: Applied Geometric Programming, Wiley, New York, 1976zbMATHGoogle Scholar
  11. 11.
    Glover, F. and Klingman, D.: Network Applications in Industry and Government, AIIE Transactions, Vol. 9, No. 4, 1977, 363–376CrossRefGoogle Scholar
  12. 12.
    Tillmann, F.: Optimization of Systems Reliability, Dekker, New York-Basel, 1980Google Scholar
  13. 13.
    Tripathy, A.: School Timetabling—A Case in Large Binary Integer Linear Programming, Mgmt. Sci., Vol. 30, No. 12, 1984Google Scholar
  14. 14.
    Chalaris, I. and Pape, U.: Ein heuristisches Verfahren zur Disposition von öltransporten in ölleitungsnetzen, Angew, Inf., Vol. 25, No. 12, 1983Google Scholar
  15. 15.
    Escudero, L. F.: On Maintenance Scheduling of Production Units, Eur. Journal of Oper. Res., Vol. 9, 1982, 264–274zbMATHCrossRefGoogle Scholar
  16. 16.
    Hillier, F. S.: Quantitative Tools for Plant Layout Analysis, J. of Ind. Eng., Vol. 14, No. 1, 1963, 33–40Google Scholar
  17. 17.
    Hillier, F. S. and Connors, M. M.: Quadratic Assignment Problem Algorithms and the Location of Indivisible Facilities, Management Science, Vol. 13, No. 1, 1966, 42–57CrossRefGoogle Scholar
  18. 18.
    Burkard, R. E. and Stratmann, K. H.: Numerical Investigations on Quadratic Assignment Problems, Nay. Res. Logist. Quart., Vol. 25, 1979, 129–144CrossRefGoogle Scholar
  19. 19.
    Wilhelm, M. R. and Ward, T. L.: Soving Quadratic Assignment Problems by Simulated Annealing, IIE Trans, Vol. 19, No. 1, 1987, 107–119CrossRefGoogle Scholar
  20. 20.
    Lawler, E. L.: The Quadratic Assignment Problem, Mgmt. Sci., Vol. 9, 1963, 586–599MathSciNetzbMATHGoogle Scholar
  21. 21.
    De Werra, D.: An Introduction to Timetabling, European Journal of Oper. Res., Vol. 19, 1985, 151–162zbMATHCrossRefGoogle Scholar
  22. 22.
    Wolff, K. H.: Methoden der Unternehmensforschung im Versicherungswesen, Springer, Berlin, 1966zbMATHCrossRefGoogle Scholar
  23. 23.
    Jewell, W. S.: Operations Research in the Insurance Industry—A Survey of Applications, J. of the Oper. Res. Soc. of America, Vol. 22, No. 5, 1974, 918–928Google Scholar
  24. 24.
    Williams, M. R.: A Graph Theory Model for the Solution of Timetables, Ph.D. Thesis, Univ. of Glasgow, 1968Google Scholar
  25. 25.
    Moreland, J. A.: Scheduling of Airline Flight Crews, M. S. Thesis, M. I. T., 1966Google Scholar
  26. 26.
    Levin, A.: Fleet Routing and Scheduling Problems for Air Transportation Systems, Ph.D. Diss., M. I. T., 1969Google Scholar
  27. 27.
    Brown, A. R.: Optimum Packing and Depletion, American Elsevier, New York, 1971zbMATHGoogle Scholar
  28. 28.
    Christofides, N., Mingozzi, A., and Toth, P.: Loading Problems, in Vííí.1. 6–05, 1979Google Scholar
  29. 29.
    Eilon, S. and Christofides, N.: The Loading Problem, Management Science, Vol. 17, 1971, 259zbMATHCrossRefGoogle Scholar
  30. 30.
    Catthoor, F., De Man, H., and Vandewalla, J: Simulated-Annealing-Based Optimiz. of Coefficient and Data Word-Lengths in Digital Filters, Int, J. Circuit Theory Appl., Vol. 16, No. 4, 1988, 371–390CrossRefGoogle Scholar
  31. 31.
    Anandalingam, G.: A Mathematical Programming Model of Decentralized Multi Level Systems, J. of the Oper. Res. Soc. (UK), Vol. 39, No. 11, 1988, 1021–1033zbMATHGoogle Scholar
  32. 32.
    Alan, A., Pritsker, B., Watters, L. J., and Wolfe, P. M.: Multiproject Scheduling with Limited Resources, A Zero-One Programming Approach, Mgmt. Sci., Vol. 16, No. 1, 1969, 93–108Google Scholar
  33. 33.
    Mize, J. H.: A Heuristic Scheduling Model for Multi-Project Organizations, Ph.D. Thesis, Purdue Univ., 1964Google Scholar
  34. 34.
    Wiest, J. D.: Some Properties od Scheduling for Large Projects with Limited Resources, Operations Research, Vol. 12, 1964, 395–418CrossRefGoogle Scholar
  35. 35.
    Wiest, J. D.: A Heuristic Model for Scheduling Large Projects with Limited Resources, Mgmt. Science, Vol. 13, No. 6, 1967, 359–377Google Scholar
  36. 36.
    Leitmann, G.: Optimization Techniques with Applications to Aerospace Systems, Academic Press, New York, 1962zbMATHGoogle Scholar
  37. 37.
    Nahmias, S.: Higher-Order Approximations for the Perishable-Inventory Problem, Oper. Res., Vol. 25, No. 4, 1977, 630–640MathSciNetzbMATHGoogle Scholar
  38. 38.
    Van Zyl, G. J. J.: Inventory Control for Perishable Commodities, Unpubl. Ph.D. Diss., Univ. of North Carolina, Chapel Hill, N. C., 1964Google Scholar
  39. 39.
    Gianessi, F. and Nicoletti, B.: The Crew Scheduling Problem—A Travelling Salesman Approach, in VIII.1. 6–05, 1979Google Scholar
  40. 40.
    Ashton, A. H. and Ashton, R. H.: Aggregating Subjective Forecasts—Some Empirical Results, Mgmt. Science, Vol. 31, 1985, 1499–1508Google Scholar
  41. 41.
    Pinter, J. and Cooke, R.: Combining Expert Opinions An Optimization Framework, Technische Hogeschool Delft ( Netherlands ), Dept. of Mathematics and Informatics Computer Science, 1987Google Scholar
  42. 42.
    Little, J. D. C.: The Synchronization of Traffic Signals by Mixed Integer linear Programming, Oper. Res., Vol. 14, 1966, 568–594zbMATHGoogle Scholar
  43. 43.
    Wagner, H. M.: Wagner, H. M., Giglio, R. J. and Glaser, R. G.—Preventive Maintenance Scheduling by Mathematical Programming, Management Science, Vol. 10, 1964, 316–334Google Scholar
  44. 44.
    Hewins, R. D.: Management Science Models for Foreign Exchange, Ph.D. Thesis, Imperial College, 1977Google Scholar
  45. 45.
    Christofides, N., Hewins, R. D., and Salkin, G. R.: Graph Theoretic Approaches to Foreign Exchange Operations, in VIII.1. 6–05, 1979Google Scholar
  46. 46.
    Junginger, W.: Stundenpläne aus dem Computer-ein Bericht zur momentanen Lage in Deutschland, Angewandte Informatik, Vol. 27, No. 4, 1985Google Scholar
  47. 47.
    Appleby, J. S. et al.: School Timetables on a Computer and Their Application to Other Scheduling Problems, The Computer J., Vol. 3, 1961, 237–245MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Arnoff, E. L. and Chambers, J. C.: On the Determination of Optimum Reserve Generation Capacity in an Electric Utility System, Oper. Res., Vol. 4, No. 4, 1956Google Scholar
  49. 49.
    Aronofsky, J. S. and Williams, A. C.: The Use of Linear Programming and Mathematical Models in Underground Oil Production, Mgmt. Science, Vol. 8, No. 4, 1962Google Scholar
  50. 50.
    Arrow, K. J., Karlin, S., and Suppes, P. (Eds.): Mathematical Methods in the Social Sciences, Proceedings of the First Stanford Symposium, Stanford Univ. Press, Stanfort, Cal., 1958Google Scholar
  51. 51.
    Bailey, N. T. J.: Operational Research in Medicine, Operations Research Quarterly, Vol. 3, No. 2, 1952Google Scholar
  52. 52.
    Müller-Merbach, H.: Optimale Einkaufsmengen, Ablauf und Planungs-forschung, Vol. 4, No. 3, 1963, 226–237Google Scholar
  53. 53.
    Beckmann, M. J.: Lagerhaltung bei Unsicherheit, unternehmensforschung, Vol. 7, No. 1, 1963, 9–26zbMATHCrossRefGoogle Scholar
  54. 54.
    Bell, G. E.: Operational Research into Air Traffic Control, Journal of the Royal Aeronautical Society, Vol. 53, 1952Google Scholar
  55. 55.
    Bennett, M. G.: The Use of Operational Research for British Railways, British Iron and Steel Research Association Conference, 1954Google Scholar
  56. 56.
    Wetzel, W.: Lineare Verteilungsmodelle in der Betriebswirtschaft-Beispiele für den praktischen Einsatz der Linearplanung in Unternehmungen, Unternehmensforschung, Vol. 1, 1956Google Scholar
  57. 57.
    Wolff, M.: Optimal Instandhaltungspolitiken in einfachen Systemen, Springer, Berlin, 1970Google Scholar
  58. 58.
    Rao, A. G.: Quantitat. Theories in Advertising, Wiley, New York, 1970Google Scholar
  59. 59.
    Steinecke,V., Seifert, O. und Ohse, D.: Lineare Planungsmodelle im praktischen Einsatz, Berlin, 1973Google Scholar
  60. 60.
    Dantzig, G. B. and Ferguson, A. R.: The Allocation of Aircrafts to Routes—An Example of Linear Programming under Uncertain Demand, Mgmt. Sci., Vol. 3, 1956, 45–73MathSciNetzbMATHGoogle Scholar
  61. 61.
    Derigs, U.: Rangzuordnungsprobleme, Diplomarbeit, Mathematisches Institut, Universität Köln, 1975Google Scholar
  62. 62.
    Derigs, U.: Rangzuordnugsprobleme, Zeitschrift fzer Operations Research, Vol. 21, 1977, 75–83MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Mc Diarmid, J. H.: The Solution of a Timetabling Problem, J. Inst. Math. Appl., Vol. 9, 1972, 23–24MathSciNetCrossRefGoogle Scholar
  64. 64.
    Meyer, M. und Steinmann, H.: Planungsmodelle der Grundstoffindustrie, Physica, Würzburg, 1971Google Scholar
  65. 65.
    Korth, H.: Zur Optimierung des hochofenmoellers, Diss., Berlin, 1974Google Scholar
  66. 66.
    Bussmann, K. F. und Mertens, P. (Eds.): Oper. Res. und Datenverarbietung in der Instandhaltungsplanung, Poeschel, Stuttgart, 1968Google Scholar
  67. 67.
    Stahlkenecht, P.: Wirtschaftliche Kammerlängen im Kalibergbau, Elektronische Datenverarbeitung, Heft 4, 1961Google Scholar
  68. 68.
    Christofides, N., Alvarez-Valdes, R., and Tamarit, J. M.: Project Scheduling with Resource Constraints—A Branch-and-Bound Approach, Eur. J. of Oper. Res., Vol. 29, No. 3, 1987, 262–273MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Karamarkar, N. and Sinha, L. P.: Application of Karmarkar’s Algorithm to Overseas Telecommunications Facilities Planning, XII. Int. Symposium on Math. Programming, Boston, 1985Google Scholar
  70. 70.
    Lohse, F.: OR im Gesundheitswesen. Modellgestützte Analyse der Auswirkungen alternativer Systemgestaltungen der gesetzlichen Krankenversicherung, in VIII.1. 1–57, 1985Google Scholar
  71. 71.
    Wohlmannstetter, V.: Die Effizienz von Krankenhäusern—Ein Vorschlag zu ihrer Ermittlung mit Hilfe der mathematischen Progr., in VIII.1. 1–57, 1985Google Scholar
  72. 72.
    Zander, H.: Lineare Planungsmodelle bei Ruhrkohle AG, in VIII.1. 1–55, 1981Google Scholar
  73. 73.
    Reichel, G.: Operations Research im Versicherungswesen, in VIII.1. 1–55, 1981Google Scholar
  74. 74.
    Larsen, P. M.: Industrial Applications of Fuzzy Logic Control, Int. Man-Machine Studies, Vol. 12, No. 1, 1980Google Scholar
  75. 75.
    Mamdani, E. H. and Gaines, B. R. (Eds.): Fuzzy Reasoning and its Applications, Academic Press, London, 1981zbMATHGoogle Scholar
  76. 76.
    Nishida, T. and Takeda, E.: Fuzzy Sets and its Applications, Morikita (in Japanese), Tokyo, 1978Google Scholar
  77. 77.
    Wiedey, G. and Zimmermann, H.-J.: Media Selection and Fuzzy Linear Programming, Oper. Res., Vol. 29, No. 11, 1978, 1071–1084zbMATHGoogle Scholar
  78. 78.
    Wang, P. P.: Advances in Fuzzy Sets, Possibility Theory and Applications, Plenum Press, New York, 1983zbMATHCrossRefGoogle Scholar
  79. 79.
    Scharge, L.: Solving Resource-Constrained Network Problems by Implicit Enumeration—Nonpreemptive Case, Oper. Res., Vol. 18, No. 2, 1970, 263–278Google Scholar
  80. 80.
    Junginger, W.: Zurueckfuehrung des Stundenplanproblems auf ein dreidimensionales Transportproblem, Zeitschr. für Oper. Res., Teil Theorie, Vol. 16, No. 1, 1972, 25MathSciNetGoogle Scholar
  81. 81.
    Vollert, H.: Kurzfristige Liquiditätsplunug bei Schweizer Banken mit Mathematischer Programmierung, in VIII. 1–57, 1985, 129–135Google Scholar
  82. 82.
    Meyer zu Selhausen, H.: Optimalplanung von Aktiv-und Passiv- Geschäft einer Bank, in Ruehli, E. und Thommen, J.-P. (Eds.)—Unternehmensfuehrung aus finanz-und bankwirtschaftlicher Sicht, C. E. Poeschel Verlag, Stuttgart, 1981, 177–194Google Scholar
  83. 83.
    Isermann, H.: Stapelung von rechteckigen Versandgebinden auf Paletten—Generierung von Stapelänen im Dialog mit einem PC, in VIII.1. 1–57, 1985, 355–362Google Scholar
  84. 84.
    Iserman, H.: Optimierung der Palettenbeladung im praktischen Einsatz—Eine Fallstudie, Fak. für Wirtsch., Universität Bielefeld, 1984Google Scholar
  85. 85.
    Salzer, J. J.: Opt. Stapelmuster, Neue Verpackung, 1983, 1248–1252Google Scholar
  86. 86.
    Smith, A. and De Cani, P.: An Algorithm to Optimize the Layout of Boxes in Pallets, J. Oper. Res. Soc., Vol. 31, 1980, 573–578Google Scholar
  87. 87.
    Steudel, H. J.: Generating Pallet Loading Patterns, Management Science, Vol. 25, 1979, 997–1004zbMATHCrossRefGoogle Scholar
  88. 88.
    Warschat, J.: Optimale Steuerung eines Produktions-Lagerhaltungs-systems mit beschränkten Zustandsgrößen bei verschiedenen Kostenkriterien, in VIII.1. 1–57, 1985, 532–538MathSciNetGoogle Scholar
  89. 89.
    Warschat, J. and Wunderlich, H.-J.: Time-Optimal Control Policies for Cascaded Production-Inventory Systems with Control and State Constraints, Int. J. Systems Sci., Vol. 15, 1984, 513–524MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Leipala, T. and Nevalainen, O.: Optimization of Movements of a Component Placement Machine, Eur. J. of Oper. Res., Vol. 38, No. 2, 1989, 167–177CrossRefGoogle Scholar
  91. 91.
    Dennis, J. B.: Mathematical Programming and Electrical Networks, M. I. T. Press and John Wiley, New York, 1959Google Scholar
  92. 92.
    Sarma, P. V. and Reklaitis, G. V.: Optimization of a Complex Chemical Process Using an Equation Oriented Method, Math. Progr. Study, No. 20, 1982, 113–160zbMATHCrossRefGoogle Scholar
  93. 93.
    Corley, H. W. Jr.: Optimal Set-Partitioning with Applications in the Regional Design, Ph.D. Diss., Univ. of Florida, Gainesville, Florida, 1971Google Scholar
  94. 94.
    Cerda, J. et al.: A New Methodology for the Optimal Design and Production Schedule of Multipurpose Batch Plants, Ind. Eng. Chem. Res., Vol. 28, 1989, 988–998CrossRefGoogle Scholar
  95. 95.
    Jurecka, W. and Zimmermann, H.-J.: Operations Research im Bauwesen, Springer, Berlin, 1971Google Scholar
  96. 96.
    Neuvians, G. und Zimmermann, H.-J.: Die Ermittlung optimaler Ersatz-und Instandhaltungspolitiken mit Hilfe des dynamischen Programmierens, Ablauf-und Planungsforschung, 1970, 94Google Scholar
  97. 97.
    Klarbring, A. and Bjorkman, G.: Treatment of Problems in Contact Mechanics by Mathematical Programming, J. Mec. Theor. Appl., Vol. 7, No. 1, Suppl., 1988, 83–96Google Scholar
  98. 98.
    Christian, J. and Caldera, H.: Earthmoving Cost Optimization by Oper. Res., Can. J. Civ. Eng., Vol. 15, No. 4 1988, 679–684CrossRefGoogle Scholar
  99. 99.
    Ellis, J. H. and Revelle, C. S.: Separable Linear Algorithm for Hydro-power Optimize., Water Resources Bull, Vol. 24, No. 2, 1988, 435–447CrossRefGoogle Scholar
  100. 100.
    Yager, R. R.: A Mathematical Programming Approach to Inference with the Capability of Implementing Default Rules, Int. J. Man-Machine Studies, Vol. 29, 1988, 685–714zbMATHCrossRefGoogle Scholar
  101. 101.
    Trypia, M. N.: Cost Minimization of simulataneous Projects that Require the Same Resource, Eur. J. of Oper. Res., Vol. 5, 1980, 235–238zbMATHCrossRefGoogle Scholar
  102. 102.
    Mohanty, R. P. and Siddiq, M. K.: Multiple Projects—Multiple Resources—Constrained Scheduling—Some Studies, Int. J. Prod. Res., Vol. 27, No. 2, 1989, 261–280CrossRefGoogle Scholar
  103. 103.
    Lightner, H. R.: Multiple Criterion Optimization and Statistical Design for Electronic Circuits, Ph.D. Thesis, Carnegie-Mellon Univ., 1979Google Scholar
  104. 104.
    Barahona, F., Grötschel, M., Jünger, M., and Reinelt. G.: An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design, Oper. Res., Vol. 36, 1988, 493–513zbMATHCrossRefGoogle Scholar
  105. 105.
    Cheshire, M., Mc Kinnon, K. I. M., and Williams, H. P.: The Efficient Allocation of Private Contractors to Public Work, J. Oper. Res. Soc., Vol. 35, 1984, 705–709Google Scholar
  106. 106.
    Dantzig, G. B., Mc Allister, P. H., and Stone, J. C.: Formulating an Objective for an Economy, Math. Progr., Vol. 42, 1988, 11–32zbMATHCrossRefGoogle Scholar
  107. 107.
    Dantzig, G. B., Mc Allister, P. H., and Stone, J. C.: Deriving a Utility Function for the U. S. Economy, Systems Optimization Laboratory, Dept. of Oper. Res., Stanford Univ., October 1987Google Scholar
  108. 108.
    Foulds, L. R.: Testing the Theory of Evolution—A Novel Application of Combinatorial Optimization, Discrete Appl. Math., Vol. 15, No. 2–3, 1986, 271–282MathSciNetzbMATHGoogle Scholar
  109. 109.
    Foulds, L. R. and Graham, R. L.: The Steiner Problem in Phylogeny is NP-Complete, Adv. in Appl. Math., Vol. 3, 1983, 43–49MathSciNetGoogle Scholar
  110. 110.
    Liittschwager, J. M. and Wang, C.: Integer Programming Solution for a Classification Problem, Mgmt. Sci., Vol. 24, 1978, 1515zbMATHGoogle Scholar
  111. 111.
    Rao, M. R.: Cluster Analysis and Mathematical Programming, J. Am. Statistical Ass., Vol. 66, 1971, 622zbMATHGoogle Scholar
  112. 112.
    Bajgier, S. M. and Hill, A. V.: An Experimental Comparison of Statistical and Linear Programming Approaches to the Discriminant Problem, Decis. Sci., Vol. 13, 1982, 604–618Google Scholar
  113. 113.
    Arthanari, T. S. and Dodge, Y.: Mathematical Programming is Statistics Wiley, New York, 1981Google Scholar
  114. 114.
    Bass, F. M. and Lonsdale,.R. T.: An Exploration of Linear Programming in Media Selection, J. Marketing Research, Vol. 3, 1966, 179–188CrossRefGoogle Scholar
  115. 115.
    Engel, J. F. abd Warshaw, M. R.: Allocating Advertising Dollars by Linear Programming, J. Advertising Res., Vol. 5, 1964, 42–48Google Scholar
  116. 116.
    Fabian, T.: Blast Furnace Production Planning—A Linear Programming Example, Mgmt. Sci., Vol. B14, 1967, 1–27MathSciNetGoogle Scholar
  117. 117.
    Loucks, O. P., Revelle, C. S., and Lynn, W. R.: Linear Progr. Models for Water Pollution Control, Mgmt. Sci., Vol. B14, 1968, 166–181Google Scholar
  118. 118.
    Smith, D.: Linear Programming Models in Business, Polytech Publishers, Stockport, U. K., 1973Google Scholar
  119. 119.
    Salkin, H. M. and Saha, J. (Eds.): Studies in Linear Programming North Holland, Amsterdam, 1975Google Scholar
  120. 120.
    Spath, H., Gutgesell, W., and Grun, G.: Short Term Liquidity Management in a Large Concern Using Linear Prog., in VIII. 19–119, 1975Google Scholar
  121. 121.
    Schlick, H.: Die Anwendung der “Fuzzy Set Theory” zur Entscheidungsfindung und Prozessteuerung im Bauingeieurwesen, Baumasch. Bautechnik, Vol. 32, 1985, 183Google Scholar
  122. 122.
    Schlick, H.: Vorhersagen und Planen mit unscharfen Mengen—Fuzzy Set Theory im Bauingeieurwesen, Teil 1 und 2, Baumasch. Bautechnik, Vol. 35, No. 4 und No. 5, 1988Google Scholar
  123. 123.
    Sethi, S. P. and Thomson, G. L.: Applied Optimal Control and Mgmt. Sci., Martinus Nijhoff, Boston, 1981Google Scholar
  124. 124.
    Sidiq, A.: Das Konzept der unscharfen Mengen und dessen Anwendung auf die Bauproduktion am Beispiel des Strassenbaus, Tiefbau—Ingenieurbau—Strassenbau, No. 1 und No. 2, 1987Google Scholar
  125. 125.
    Lazaro, M. and Puigjaner, L.: Simulation and Optimization of Multiproduct Plants for Batch and Semibatch Operation, I. Chem. Symposium Series, Vol. 92, 1985, 209–222Google Scholar
  126. 126.
    Schultz, R. (Ed.): Applications of Management Science, Elsevier, New York, 1984Google Scholar
  127. 127.
    Bracken, J. and Mc Cormick, G. P.: Selected Applications of Nonlinear Programming, Wiley, New York, 1968zbMATHGoogle Scholar
  128. 128.
    Young, W., Ferguson, J. G., and Corbishley, B.: Some Aspects of Planning in Coal Mining, Oper. Res. Quart., Vol. 14, 1963, 31–45Google Scholar
  129. 129.
    Wardle, P. A.: Forest Management and Operational Research, Management Science, Vol. 11, 1965, 260–270CrossRefGoogle Scholar
  130. 130.
    Foulds, L. R.: Techniques for Facilities Layout—Deciding Which Pairs of Activities Should be Adjacent, Mgmt, Science, Vol. 29, No. 12, 1983, 1414–1426zbMATHGoogle Scholar
  131. 131.
    Eisemann, K. and Yound, W. M.: Study of a Textile Mill with the Aid of Linear Programming, Management Technology, Vol. 1 No. 1, 1960Google Scholar
  132. 132.
    Slowinsky, R.: A Multicriteria Programming Method for Water Supply Systems Development Planning, Fuzzy Sets and Systems, Vol. 19, 1986, 217–228MathSciNetCrossRefGoogle Scholar
  133. 133.
    Zangwill, W. I.: Media Selection by Decision Programming, J. Advertising Research, Vol. 5, 1965, 23–27Google Scholar
  134. 134.
    Müller-Merbach, H.: Lineare Planungsrechnung und industrielle Anwendung, Zeitschrift für das Gesamte Rechnugswesen, Vol. 13, No. 3, 1967, 48–52 und No. 4, 89–92Google Scholar
  135. 135.
    Cottle, R. W. and Pang. J. S.: On Solving Linear Complementarity Problems as Linear Programs, Math. Progr. Study, No. 7, 88–107Google Scholar
  136. 136.
    Mangasarian, O. L.: Linear Complementarity Problem Solvable by a Single Linear Program, Math. Prgr., Vol. 10, 1976, 263–270MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Mangasarian, O. L.: Characterization of Linear Complementarity Problems as Lin. Progr., Math. Progr. Study, Vol. 7, 1978, 74–87MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Eaves, B. C.: The Linear Complementarity Problem, Management Science, Vol. 17, 1971, 61 2634Google Scholar
  139. 139.
    Wiebking, R. D.: Verschiedene Anwendungen der nichtlinearen Programmierung, in VIII.1. 1–56, 1979Google Scholar
  140. 140.
    Dembo, R. S., Mulvey, J. M., and Zenios, S. A.: Large-Scale Nonlinear Network Models and their Application, Oper. Res., Vol. 37, No. 3, 1989, 353–372MathSciNetzbMATHGoogle Scholar
  141. 141.
    Warner, D. M. and Prawda, J.: A Mathematical Programming Model for Scheduling Nursing Personnel in a Hospital, Mgmt. Science, Vol. 9, 1972, 411–422Google Scholar
  142. 142.
    Bradley, S. P., Hax, A. C., and Magnanti, T. L.: Applied Mathematical Programming, Addison-Wesley, Reading, Mass., 1977Google Scholar
  143. 143.
    Chowdhury, S.: Analytical Approaches to the Combinatorial Optimization in Linear Placement Problems, IEEE Trans. on Computer Aided Design, Vol. 8, No. 6, 1989, 630–639CrossRefGoogle Scholar
  144. 144.
    Goto, S.: An Efficient Algorithm for the Two-Dimensional Placement Problem in Electrical Circuit Layout, IEEE Trans. Circuit Syst., Vol. CAS-28, 1981, 12–18Google Scholar
  145. 145.
    Bazaraa, M. S. and Elshafei, A. N.: An Exact Branch-and Bound Procedure for Quadratic Assignment Problem, Nay. Res. Log. Quart., Vol. 26, No. 1, 1979, 109–120MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Hanan, M. and Kurtzberg, J. M.: A Review of the Placement and Quadratic Assignment Problems, SIAM Review, Vol. 14, No. 2, 1972, 324–341MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Hales, H. L. (Ed.): Computerized Facilities Planning—Selected Readings, Ind. Eng. and Management Press, Norcross, GA, 1985Google Scholar
  148. 148.
    Wilhelm, M. R., Ward, T. L., Rankin, R. A., Gupta, R. and Dutton, R.: Innovative Improvement Procedures for Solving Quadratic Assignment Problems, in VII. 19–147, 1985Google Scholar
  149. 149.
    Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M.: Engineering Optimization—Methods and Applications, Wiley, New York, 1983Google Scholar
  150. 150.
    Rose, J., Klebsch, W. and Wolf, J.: Temperature Measurement of Simulated Annealing Placements, Standford Univ., Computer System Lab., Standford, California, 1987Google Scholar
  151. 151.
    Pang, J. S., Kaneko, I. and Hallman, W. P.: On the Solution of Some (Parametric) Linear Complementarity Problems with Applications to Portfolio Selection, Structural Engineering and Actuarial Graduation, Math. Progr., Vol. 17, 1979, 325–347MathSciNetCrossRefGoogle Scholar
  152. 152.
    Papamarkos, N.: A Program for the Optimum Approximation of Real Rational Functions Via Linear Programming, Adv. Eng. Software, Vol. 11, No. 1, 1989, 37–48zbMATHGoogle Scholar
  153. 153.
    Guimaraes, R. C. and Kingsman, B. G.: Simulation-Optimisation—The Method and its Application in the Analysis of Grain Terminal Operations, Eur. J. Oper. Res., Vol. 41, 1989, 44–53CrossRefGoogle Scholar
  154. 154.
    Mc Mahon, W. L. and Roach, P. A.: Site Energy Optimization—A Mathematical Progr. Approach, Interfaces, Vol. 12, No. 6, 1982, 66–82Google Scholar
  155. 155.
    Duffuaa, S. O. and Raouf, A.: Mathematical Optimization Models for Multicharacteristic Repeat Inspections, Appl. Math. Modelling. Vol. 13, No. 7, 1989, 408–412CrossRefGoogle Scholar
  156. 156.
    Jain, J. K.: A Model for Determining the Opt. Number of Inspection Costs, Unpubl. Master Thesis, Univ. of Windsor, Ontario, 1977Google Scholar
  157. 157.
    Cohoon, J. and Sahni, S.: Heuristics for the Board Permutation Problem, Proc. Int. Conf. Computer-Aided Design, 1983, 81–83Google Scholar
  158. 158.
    Husain, A. and Gangiah, K.: Optimization Techniques, Macmillan India, 1976Google Scholar
  159. 159.
    Moon, G. and Mc Roberts, K. L.: Combinatorial Optimization in Facility Layout. Comp. Ind. Eng., Vol. 17, No. 1–4, 1989, Proc. of the 11th Annual Conf. on Computers in Ind. Eng., Orlando, Florida, 1989, 43–48Google Scholar
  160. 160.
    Davis, E. W. and Patterson, J. H.: A Comparison of Heuristic and Optimum Solutions in Resource Constrained Project Scheduling Mgmt. Sci., Vol. 21, 1975, 944–955Google Scholar
  161. 161.
    Kim, S. O. and Schniederjans, M. C.: Heuristic Framework for the Resource Constrained Multi-Project Scheduling Problem, Comp. and Oper. Res., Vol. 16, No. 6, 1989, 541–556Google Scholar
  162. 162.
    Iri, M.: Appl. of Matroid Theory, in VIII.1. 1–16, 1983, 158–201MathSciNetGoogle Scholar
  163. 163.
    Koellner, H., Schammler, G. et al.: Vektoroptimierung als Entscheidungshilfe bei der Rationalisierung komplexer verfahrenstechnischer Systeme, Teile II und III, Chem. Tech. (Leipzig), Vol. 41, 1989, 11–14 und 54–57Google Scholar
  164. 164.
    Sahinidis, N. V. et.al.: Optimization Model fl or Long Range Planning in the Chemical Industry, Comput. Chem. Eng., Vol. 13, No. 9, 1989, 1049–1063Google Scholar
  165. 165.
    Ostrovskii, G. M., Ostrovskii, M. G., and Berezhinskii, T. A.: Optimizing Steady State Regimes in Complex Chemical Engineering Systems, USSR Theor. Found. Chem. Eng., Vol. 22, No. 3, 1989, 293–299Google Scholar
  166. 166.
    Giles, P.: The Value of Information for Decision-Making in Insurance, Oper. Res. Quarterly, Vol. 20, 1969, page 293Google Scholar
  167. 167.
    Dantzig, G. B., Johnson, S. H., and White, W. B.: A Linear Programming Approach to the Chemical Equilibrium Problem, Mgmt. Sci., Vol. 5, 1985, 38–43MathSciNetGoogle Scholar
  168. 168.
    White, W. B., Johnson, S. H., and Dantzig, G. B.: Chemical Equilibrium in Complex Mixtures, J. Chem. Phys., Vol. 28, 1958, 751–755CrossRefGoogle Scholar
  169. 169.
    Martello, S., Laporte, G., Minoux, M., Ribeiro, C. (Ed.): Surveys in Combinatorial Problem Solving, North-Holland, Amsterdam, 1987Google Scholar
  170. 170.
    Koopmans. T. C. and Beckmann, M. J.: Assignment Problems and the Location of Econ. Activities, Econometrica, Vol. 25, 1957, 53–76Google Scholar
  171. 171.
    Finke, G., Burkard, R. E. and Rendl, F.: Quadratic Assignment Problems, in VII. 19–169, 1987, 61–82MathSciNetGoogle Scholar
  172. 172.
    Krarup, J. and Pruzan, P. M.: Computer-Aided Layout Design, Mathematical Programming Study, No. 9, 1978, 75–94MathSciNetCrossRefGoogle Scholar
  173. 173.
    Gomory, R. E. and Hu, T. C.: Synthesis of a Communication Network, SIAM J. Appl. Math., Vol. 12, 1964, 348–369MathSciNetzbMATHGoogle Scholar
  174. 174.
    Minoux, M.: Network Synthesis and Dynamic Network Optimization, in VII. 19–169, 1987, 283–324MathSciNetGoogle Scholar
  175. 175.
    Wong, D. F., Leong, H. W. and Liu, C. L.: Simulated Annealing for VLSI Design, Kluwer Academic Publishers, Boston, 1988zbMATHCrossRefGoogle Scholar
  176. 176.
    Seo, F. and Sakawa, M.: Multiple Criteria Decision Analysis in Regional Planning—Concepts, Methods and Applications, D. Reidel Publishing Company, Boston, 1988Google Scholar
  177. 177.
    Edgar, T. F. and Himmelblau, D. M.: Optimization of Chemical Processes, McGraw-Hill, New York, 1988Google Scholar
  178. 178.
    Gorak, A., Kraslawski, A. and Vogelpohl, A.: Simulation and Optimization of Multicomponent Distillation, International Chemical Engineering, Vol. 30, No. 1, 1990, 1–15Google Scholar
  179. 179.
    Bazaraa, M. S. and Kirca, O.: A Branch-and-Bound Based Heuristic for Solving the Quadratic Assignment Problem, Nay. Res. Logist. Quart., Vol. 30, 1983, 287–304MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Keaton, M. H.: Designing Optimal Railroad Operating Plans—Lagrangian Relaxation and Heuristic Approaches, Transp. Res., Vol. 23B, No. 6, 1989, 415–431Google Scholar
  181. 181.
    Keaton, M. H.: Optimizing Railroad Operations, Unpublished Ph.D. Diss., Univ. of Wisconsin, Madison, 1985Google Scholar
  182. 182.
    Cacuci, D. G.: Global Optimization and Sensitivity Analysis, Nuclear Science and Engineering, Vol. 104, No. 1, 1990, 78–88MathSciNetGoogle Scholar
  183. 183.
    Radulescu, M. and Radulescu, S.: Applications of Discrete Mathematical Programming to the Design of Distributed Database Systems, Econ. Comp. and Econ. Cybernetics Studies and Research, Vol. 24, No. 1, 1989, 37–52MathSciNetzbMATHGoogle Scholar
  184. 184.
    Connolly, D. T.: Improved Annealing Scheme for the QAP, Europ. J. Oper. Res., Vol. 46, No. 1, 1990, 93–100MathSciNetzbMATHCrossRefGoogle Scholar
  185. 185.
    Roberts, S. M.: Dynamic Programming in Chemical Engineering and Process Control, Academic Press, New York, 1964Google Scholar
  186. 186.
    Gershkoff, I.: Optimizing Flight Crew Schedules, Interfaces, Vol. 19, No. 4, 1989, 29–43CrossRefGoogle Scholar
  187. 187.
    Burkard, R. E.: Quadratic Assignment Problems, Eur. J. Oper. Res. Vol. 15, 1984, 283–289MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Sunderland, K. V.: Bank Planning Models—Some Quantitative Methods Applied to Bank Planning Problems, Paul Haupt Verlag, Bern, 1974Google Scholar
  189. 189.
    Schiefer, G.: Lösung großer linearer Regionalplanungsprobleme mit der Methode von Dantzig und Wolfe, Zeitschr. für Oper. Res., Vol. 20, No. 1976, B1 - B16Google Scholar
  190. 190.
    Burkard, R. E.: Heuristische Verfahren zur Lösung quadratischer Zuordnungsprobleme, Zeitschr. für Oper. Res., Vol. 19, No. 5, 1975, 183–193zbMATHGoogle Scholar
  191. 191.
    Cheng, T. C. E.: An Overview of Uses of OR Techniques in Bank Management, Managerial Finance (UK), Vol. 16, No. 1, 1990, 1–6CrossRefGoogle Scholar
  192. 192.
    Schlegel, H.: Verwendbarkeit von Operations-Research-Modellen in der Praxis der Planung von Produkten in der Automobilbranche, Fortschrittliche Betriebsführung, Vol. 22, No. 4, 1973, 195–202Google Scholar
  193. 193.
    Churgin, A. I. and Peschel, M. (Eds.): Optimierung von Erzeugnissen und Prozessen—Ein-und mehrkritirielle Methoden, Oldenbourg, München, 1990Google Scholar
  194. 194.
    Wright, M. B.: Applying Stochastic Algorithms to a Locomotive Schedul. Problem, J. Oper. Res. Soc., Vol. 40, No. 2, 1990, 187Google Scholar
  195. 195.
    Lasdon, L. S. and Waren, A. D.: Survey of Nonlinear Programming Appl., Oper. Res., Vol. 28, No. 5, 1980, 34–50MathSciNetGoogle Scholar
  196. 196.
    Darby, M. I. and White, D. C.: On-line Optimization of Complex Chemical Processes, Chem. Eng. Progress, Vol. 84, No. 10, 1988, 51–59Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Kurt Littger
    • 1
  1. 1.MünchenDeutschland

Personalised recommendations