Advertisement

The Molecular Biology of Expectation

  • Melvin Cohn

Abstract

I have listened to but never given an after-dinner talk. I can remember, however, being grateful when the speaker was witty and as far as possible, not controversial. This combination plus the food and drink means that nobody feels threatened and the audience is relaxed and receptive. In this mood, I intend to speculate about our world which took only six days to fashion. While this is a tour de force, it is even more of a miracle that after 6000 years of civilization we can still live in it. This is a tribute to the extraordinary variety of learned and adaptive responses which we are capable of performing. In fact, man, throughout history, has so marvelled at his own prowess to learn and adapt that he created God in his own image. There is no question that animals behave as though there were a point to their actions; they are machines with the ability to show adaptive behavior. The vitalists, therefore, asked the right questions but gave the wrong answers.

Keywords

Amino Acid Replacement Somatic Evolution Somatic Model Leopard Shark Heavy Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J., and G. D. Das (1965). Post-natal origin of microneurones in the rat brain. Nature, 207:953–956.PubMedCrossRefGoogle Scholar
  2. Altman, J., and G. D. Das (1966a). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neur., 126:337–389.PubMedCrossRefGoogle Scholar
  3. Altman, J., and G. D. Das (1966b). Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neur., 128:431–474.CrossRefGoogle Scholar
  4. Altman, J., W. J. Anderson, and K. A. Wright (1967). Selective destruction of precursors of microneurons of the cerebellar cortex with fractionated low-dose X-rays. Exp. Neur., 17:481–497.CrossRefGoogle Scholar
  5. Anker, H. S. (1960). A possible biochemical mechanism for memory. Nature, 188:938.PubMedCrossRefGoogle Scholar
  6. Appella, E., K. R. McIntire, and R. N. Perham (1967). Lambda Bence Jones proteins of the mouse: chemical and immunological characterization. J. Mol. Biol., 27:391–394.PubMedCrossRefGoogle Scholar
  7. Appella, E., and D. Ein (1967). Two types of lambda polypeptide chains in human immunoglobulins based on an amino acid substitution at position 190. Proc. Natl. Acad. Sci. U. S., 57:1449–1454.CrossRefGoogle Scholar
  8. Attardi, D. G., and R. W. Sperry (1963). Preferential selection of central pathways by regenerating optic fibers. Exp. Neur., 7:46–64.CrossRefGoogle Scholar
  9. Baglioni, C. (1967). Homologies in the position of cysteine residues of K and L type chains of human immunoglobulins. Biochem. Biophys. Res. Commun., 26:82–89.PubMedCrossRefGoogle Scholar
  10. Bakemeier, R. F. (1961). A possible cellular explanation of the multiplicity of steroid reductases. Cold Spring Harbor Symp. Quant. Biol., 26:379–387.CrossRefGoogle Scholar
  11. Bremermann, H. (1967). Quantitative aspects of goal-seeking self-organizing systems. Progress in Theoretical Biology, 1:59–77 (F. M. Snell, ed.), New York: Academic Press.Google Scholar
  12. Brenner, S., and C. Milstein (1966). Origin of antibody variation. Nature, 211:242–243.PubMedCrossRefGoogle Scholar
  13. Burnet, M. (1959). Clonal selection theory of acquired immunity. Nashville, Tennessee: Vanderbilt Univ. Press.Google Scholar
  14. Campbell, J. (1967). Permissive translation of nucleic acid: a mechanism for antibody synthesis. J. Theoret. Biol., 16:321–331.CrossRefGoogle Scholar
  15. Cohen, S. (1965). The in vitro synthesis of immunoglobulin light chains. Immunopathology, IV Intl. Symp. (P. Grabar and P. A. Miescher, eds.), 243–254, New York: Grune and Stratton, Inc.Google Scholar
  16. Cohen, S. (1966). General structure and heterogeneity of immunoglobulins. Proc. Roy. Soc. (London) Ser. B, 166:114–123.CrossRefGoogle Scholar
  17. Cohn, M. (1967a). Natural history of the myeloma. Cold Spring Harbor Symp. Quant. Biol., 32:211–221.CrossRefGoogle Scholar
  18. Cohn, M. (1967b). Antibody synthesis: the take home lesson. Gamma Globulins Nobel Symp. Ill (J. Killander, ed.), 615–640, New York: Interscience Pub.Google Scholar
  19. Cohn, M. (1967c). Reflections on a discussion with Karl Popper: the molecular biology of expectation. Bulletin of the All India Institute of Medical Sciences, 1:8–16.Google Scholar
  20. Cohn, M. (1967d). What can Escherichia coli and the plasmacytoma contribute to understanding differentiation and immunology? Symp. Intl. Soc. for Cell Biology, in press.Google Scholar
  21. Crumpton, M. J., and J. M. Wilkinson (1963). Amino acid compositions of human and rabbit γ-globulins and of the fragments produced by reduction. Biochem. J., 88:228–234.PubMedGoogle Scholar
  22. Doolittle, R. F. (1966). The amino-terminal amino acid sequences of rabbit immunoglobulin light chains. Proc. Nat. Acad. Sci. U. S., 55:1195–1201.CrossRefGoogle Scholar
  23. Dreyer, W. J., and J. C. Bennett (1965). The molecular basis of antibody formation: a paradox. Proc. Nat. Acad. Sci. U. S., 54:864–869.CrossRefGoogle Scholar
  24. Dreyer, W. J., W. R. Gray, and L. Hood (1967). The genetic, molecular and cellular basis of antibody formation: some facts and a unifying hypothesis. Cold Spring Harbor Symp. Quant. Biol., 32:353–367.CrossRefGoogle Scholar
  25. Edelman, G. M., and B. Benacerraf (1962). On structural and functional relations between antibodies and proteins of the gamma-system. Proc. Nat. Acad. Sci. U. S., 48:1035–1042.CrossRefGoogle Scholar
  26. Edelman, G. M., and J. A. Gaily (1967). Somatic recombination of duplicated genes: an hypothesis of the origin of antibody diversity. Proc. Nat. Acad. Sci. U. S., 57:353–358.CrossRefGoogle Scholar
  27. Edelman, G. M. (1967). Studies on the primary and tertiary structure of γG immunoglobulin. Gamma Globulins Nobel Symp. III (J. Killander, ed.), 89–108, New York: Interscience Pub.Google Scholar
  28. Ein, D., and J. L. Fahey (1967). Two types of lambda polypeptide chains in human immunoglobulins. Science, 156:947–948.PubMedCrossRefGoogle Scholar
  29. Estabrook, R. W., J. B. Schenkman, W. Cammer, H. Remmer, D. Y. Cooper, S. Narasimhulu, and O. Rosenthal (1966). Cytochrome P-450 and mixed function oxidations. Biological and Chem. Aspects of Oxygenases. Proc. of United States-Japan Symp. on Oxygenases. (K. Bloch and O. Hayaishi, eds.), 153–178. Tokyo: Maruzen Co., Ltd.Google Scholar
  30. Fleischman, J. (1967). Synthesis of the γG heavy chain in rabbit lymph node cells. Biochemistry, 6:1311–1320.PubMedCrossRefGoogle Scholar
  31. Gaze, R. M. (1967). Growth and differentiation. Ann. Rev. Physiol., 29:59–86.CrossRefGoogle Scholar
  32. Gray, W. R., W. J. Dreyer, and L. Hood (1967). Mechanism of antibody synthesis: size differences between mouse kappa chains. Science, 155:465–467.PubMedCrossRefGoogle Scholar
  33. Hechter, O., and D. K. Halkerston (1964). On the nature of macromolecular coding in neuronal memory. Perspectives Biol. & Med., 7:183–198.Google Scholar
  34. Hilschmann, N. (1967). The structure of the immunoglobulins (L-chains) and the antibody problem. Gamma Globulin Nobel Symp. III (J. Killander, ed.), 33–44, New York: Interscience Pub.Google Scholar
  35. Hilschmann, N. (1967). Die vollständige Aminosäuresequenz des Bence-Jones-ProteinsCum. (κ-Typ). Z. Physiol. Chem., 348:1718–1722.Google Scholar
  36. Hood, L. E., W. R. Gray, and W. J. Dreyer (1966). On the mechanism of antibody synthesis: a species comparison of L-chains. Proc. Nat. Acad. Sci. U. S., 55:826–832.CrossRefGoogle Scholar
  37. Hood, L., W. R. Gray, B. G. Sanders, and W. J. Dreyer (1967). Light chain evolution. Cold Spring Harbor Symp. Quant. Biol., 32:133–145.CrossRefGoogle Scholar
  38. Jerne, N. K. (1967). Waiting for the end. Cold Spring Harbor Symp. Quant. Biol., 32:591–603.CrossRefGoogle Scholar
  39. Kabat, E. A. (1967a). The paucity of species-specific amino acid residues in the variable regions of human and mouse Bence-Jones proteins and its evolutionary and genetic implications. Proc. Nat. Acad. Sci. U. S., 57:1345–1349.CrossRefGoogle Scholar
  40. Kabat, E. A. (1967b). A comparison of invariant residues in the variable and constant regions of human K, human L, and mouse K Bence-Jones proteins. Proc. Nat. Acad. Sci. U. S., 58:229–233.CrossRefGoogle Scholar
  41. Knopf, P., R. M. E. Parkhouse, and E. S. Lennox (1967). Biosynthetic units of an immunoglobulin heavy chain. Proc. Nat. Acad. Sci. U. S., 58:2288–2296.CrossRefGoogle Scholar
  42. Lederberg, J. (1959). Genes and antibodies. Science, 129:1649–1653.PubMedCrossRefGoogle Scholar
  43. Lennox, E. S. (1966). The genetics of the immune response. Proc. Roy. Soc. (London) Ser. B, 166:222–231.CrossRefGoogle Scholar
  44. Lennox, E. S., and M. Cohn (1967). Immunoglobulins. Ann. Rev. Biochem., 36: 365–406.PubMedCrossRefGoogle Scholar
  45. Lennox, E. S., P. M. Knopf, A. J. Munro, and R. M. E. Parkhouse (1967). A search for biosynthetic subunits of light and heavy chains of immunoglobulins. Cold Spring Harbor Symp. Quant. Biol., 32:249–254.CrossRefGoogle Scholar
  46. Mach, B., H. Koblet, and D. Gross (1967). Studies on the cell free biosynthesis of immunoglobulins. Cold Spring Harbor Symp. Quant. Biol., 32:269–275.CrossRefGoogle Scholar
  47. Mannik, M. (1967). Variability in the specific interactions of H and L chains of γG-Globulins. Biochemistry, 6:134–142.PubMedCrossRefGoogle Scholar
  48. Mekler, L. B. (1967). Mechanism of biological memory. Nature, 215:481–484.PubMedCrossRefGoogle Scholar
  49. Metcalf, D. (1966). The Thymus. Recent Results in Cancer Research. New York: Springer-Verlag.Google Scholar
  50. Milstein, C. (1967). Linked groups of residues in immunoglobulin κ chains. Nature, 216:330–332.PubMedCrossRefGoogle Scholar
  51. Mitchison, N. A. (1967). Recognition of antigen. Symp. Intl. Soc. for Cell Biology, in press.Google Scholar
  52. Mathematical Challenges to the Neo-Darwinian Interpretation of Evolution (1967), P. S. Moorhead and M. M. Kaplan, eds., Wistar Inst. Symp. Monograph. Philadelphia, Pa.: Wistar Inst. Press.Google Scholar
  53. Natapoff, A. (1967). The consideration of evolutionary conservatism toward a theory of the human brain. Persp. Biol. Med., 10:445–461.Google Scholar
  54. Niall, H. D., and P. Edman (1967). Two structurally distinct classes of kappa-chains in human immunoglobulins. Nature, 216:262–263.PubMedCrossRefGoogle Scholar
  55. Nirenberg, M., T. Caskey, R. Marshall, R. Brimacombe, D. Kellogg, B. Doctor, D. Hatfield, J. Levin, F. Rottman, S. Pestka, M. Wilcox, and F. Anderson (1966). The RNA code and protein synthesis. Cold Spring Harbor Symp. Quant. Biol., 31:11–24.CrossRefGoogle Scholar
  56. Perham, R., E. Appella, and M. Potter (1966). Light chains of mouse myeloma proteins: partial amino acid sequence. Science, 154:391–393.PubMedCrossRefGoogle Scholar
  57. Popper, K. R. (1966). Of clouds and clocks: an approach to the problem of rationality and the freedom of man. St. Louis, Mo.: Washington Univ. Press.Google Scholar
  58. Porter, R. R. (1967a). The structure of the heavy chain of immunoglobulin and its relevance to the nature of the antibody-combining site. Biochem. J., 105:417–426.PubMedGoogle Scholar
  59. Porter, R. R. (1967b). The chemical structure of the heavy chain of immunoglobulins. Gamma Globulins Nobel Symp. III (J. Killander, ed.), 81–88, New York: Interscience Pub.Google Scholar
  60. Potter, M., E. Appella, and S. Geisser (1965). Variations in the heavy polypeptide chain structure of gamma myeloma immunoglobulins from an inbred strain of mice and a hypothesis as to their origin. J. Mol. Biol., 14:361–372.PubMedCrossRefGoogle Scholar
  61. Putnam, F. W. (1967). Structural evolution of kappa and lambda light chains. Gamma Globulins Nobel Symp. III (J. Killander, ed.), 45–70, New York: Interscience Pub.Google Scholar
  62. Quattrocchi, R., D. Cioli, C. Baglioni (1967). Distribution of an arginine-lysine interchange in the invariable half of human L-type Bence-Jones proteins. Nature, 216:56–57.PubMedCrossRefGoogle Scholar
  63. Ropartz, C. (1964). Les Systèmes Héréditaires des Gamma Globulines Humaines. Ann. Biol. Clin., 22:445–473.Google Scholar
  64. Silverstein, A. M. (1963). Immunologic and psychic memory. Neurosciences Res. Prog. Bull. I (1), 1–29.Google Scholar
  65. Silverstein, A. M. (1967). Immunological differentiation in ontogeny. Symp. Intl. Soc. for Cell Biology, in press.Google Scholar
  66. Smith, C. E. (1962). Is memory a matter of enzyme induction? Science, 138: 889–890.PubMedCrossRefGoogle Scholar
  67. Smithies, O. (1967). Antibody variability. Science, 157:267–273.PubMedCrossRefGoogle Scholar
  68. Sperry, R. W. (1951). Mechanisms of neural maturations, in S. S. Stevens (ed.), Handbook of Experimental Psychology, 236–280. New York: John Wiley & Sons.Google Scholar
  69. Steinberg, A. G. (1962). Progress in the study of genetically determined human gamma globulin types (The Gm and Inv groups). Progress Med. Genetics, 2:1–33.Google Scholar
  70. Suran, A. A., and B. W. Papermaster (1967). N-terminal sequences of heavy and light chains of leopard shark immunoglobulins: evolutionary implications. Proc. Nat. Acad. Sci. U. S., 58:1619–1623.CrossRefGoogle Scholar
  71. Szilard, L. (1960). The control of the formation of specific proteins in bacteria and in animal cells. Proc. Nat. Acad. Sci. U. S., 46:277–292.CrossRefGoogle Scholar
  72. Szilard, L. (1964). On memory and recall. Proc. Nat. Acad. Sci. U. S., 51:1092–1099.CrossRefGoogle Scholar
  73. Takeshita, M., and S. Tanaka (1966). The induction of liver microsomal hydroxylating enzyme by phenobarbital and polycyclic hydrocarbons. Biological and Chem. Aspects of Oxygenases. Proc. of United States-Japan Symp. on Oxygenases. (K. Bloch and O. Hayaishi, eds.), 145–150. Tokyo: Maruzen Co., Ltd.Google Scholar
  74. Control of cellular growth in adult organisms (1967). (H. Teir and T. Tytömaa, eds.), New York: Academic Press.Google Scholar
  75. Todd, C. W. (1963). Allotypy in Rabbit 19S protein. Biochem. Biophys. Res. Commun., 11:170–175.PubMedCrossRefGoogle Scholar
  76. Whitehouse, H. L. K. (1967). Crossover model of antibody variability. Nature, 215:371–374.PubMedCrossRefGoogle Scholar
  77. Williams, R. T. (1959). Detoxification Mechanisms, 2nd ed. New York: John Wiley & Sons.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1968

Authors and Affiliations

  • Melvin Cohn
    • 1
  1. 1.The Salk Institute for Biological StudiesSan DiegoUSA

Personalised recommendations