On the Role of Nucleic Acids as Genes Conferring Precise Chemospecificity to Differentiated Cell Lines

  • William J. Dreyer
  • William R. Gray


We shall focus attention today on two types of rellular differentiation in which highly specific cells are produced. The first example is the development of the brain.


Light Chain Heavy Chain Cold Spring Harbor Antibody Formation Common Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ada, G. L., C. R. Parrish, G. J. V. Nossal, and A. Abbot (1967). The tissue localization, immunogenic, and tolerance-inducing properties of antigens and antigenic fragments. Cold Spring Harbor Symp., 32:381–394.CrossRefGoogle Scholar
  2. Attardi, D., and R. W. Sperry (1963). Preferential selection of central pathways by regenerating optic fibers. Exptl. Neurol., 7:46.CrossRefGoogle Scholar
  3. Bauer, Heinz, R. E. Horowitz, S. M. Levenson, and Hans Popper (1963). The response of the lymphatic tissue to the microbial flora: Studies on germ-free mice. Am. Jour. of Pathol., 42(4), 471–483.Google Scholar
  4. Beerman, S. (1966). A quantitative study of chromatin diminution in embryonic mitoses of Cyclops Furcifer. Genetics, 54:567–576.Google Scholar
  5. Beerman, W. (1967). Gene action at the level of the chromosome. In: Heritage from Mendel. R. A. Brink (ed.). The University of Wisconsin Press, 179–201.Google Scholar
  6. Bennett, J. Claude, L. Hood, W. J. Dreyer, and M. Potter (1965). Evidence for amino acid sequence differences among proteins resembling the L-chain subunits of immunoglobulins. J. Mol. Biol., 12:81–87.PubMedCrossRefGoogle Scholar
  7. Brew, K., T. C. Vanaman, and R. L. Hill (1967). Comparison of the amino acid sequence of bovine α-lactalbumin and hens egg white lysozyme. J. Biol. Chem., 242:3747–3749.PubMedGoogle Scholar
  8. Cairns, J. (1963). The chromosome of Escherichia coli. Cold Spring Harbor Symp., 28:43.CrossRefGoogle Scholar
  9. Callan, H. G. (1966). Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum. J. Cell Sci., 1:85–108.PubMedGoogle Scholar
  10. Campbell, A. M. (1962). Episomes. Advan. Genet., 11:101.CrossRefGoogle Scholar
  11. Ceppellini, R. (1966). Genetica Delle Immunoglobuline. Opening lecture at XII Annual Meeting of Associazione Genetica Italiana-Parma.Google Scholar
  12. Cooper, M. D., Ann E. Gabrielsen, and R. A. Good (1967). Role of the thymus and other central lymphoid tissues in immunological disease. Ann. Rev. of Med., 8:113–138.CrossRefGoogle Scholar
  13. Dreyer, W. J., and J. C. Bennett (1965). The molecular basis of antibody formation: a paradox. Proc. Nat. Acad. Sci., 54:864–869.PubMedCrossRefGoogle Scholar
  14. Dreyer, W. J., W. R. Gray, and L. Hood (1967). The genetic, molecular, and cellular basis of antibody formation: some facts and a unifying hypothesis. Cold Spring Harbor Symp., 32:353–368.CrossRefGoogle Scholar
  15. Eck, R., and M. O. Dayhoff (1966). Atlas of Protein Sequence and Structure, p. 146.Google Scholar
  16. Ellis, S. T., J. L. Gowans, and J. C. Howard (1967). Cellular events during the induction of antibody formation. Cold Spring Harbor Symp., 32:395–406.CrossRefGoogle Scholar
  17. Fahey, J. L., and M. Potter (1959). Bence Jones proteinuria associated with a transplantable mouse plasma cell neoplasm. Nature, 184:654–655.PubMedCrossRefGoogle Scholar
  18. Good, R. A., and B. W. Papermaster (1964). Ontogeny and phylogeny of adaptive immunity. Advances in Immunol., 4:1–15CrossRefGoogle Scholar
  19. Gray, W. R., W. J. Dreyer, and L. Hood (1967a). Mechanism of antibody synthesis: Size difference between mouse kappa chains. Science, 155:465–467.PubMedCrossRefGoogle Scholar
  20. Gray, W. R., W. J. Dreyer, and L. Hood (1967b). Correlated variations in immunoglobulins: Two major subclasses of kappa chains, in press.Google Scholar
  21. Gray, W. R. (1967). Evolutionary relationships in immunoglobulins. Manuscript in preparation.Google Scholar
  22. Hartley, B. S., and D. L. Kaufmann (1966). Amino acid sequence of bovine chymotrypsinogen A. Biochem. J., 101:229.PubMedGoogle Scholar
  23. Hill, R. L., R. Delaney, R. E. Fellows, and M. E. Lebovitz (1966). The evolutionary origins of the immunoglobulins. Proc. Nat. Acad. Sci., 56:1762.PubMedCrossRefGoogle Scholar
  24. Hilschmann, N. (1967). Hoppe-Seyler Phys. Chem., 348:1077–1080.Google Scholar
  25. Hilschmann, N., and L. C. Craig (1965). Amino acid sequence studies with Bence Jones proteins. Proc. Nat. Acad. Sci., 53:1403.PubMedCrossRefGoogle Scholar
  26. Hood, L., W. R. Gray, and W. J. Dreyer (1966). On the mechanism of antibody synthesis: A species comparison of L-chains. Proc. Nat. Acad. Sci., 55(4), 826–832.PubMedCrossRefGoogle Scholar
  27. Hood, L., W. R. Gray, and W. J. Dreyer (1966). On the evolution of antibody light chains. J. Mol. Biol., 22:179–182.CrossRefGoogle Scholar
  28. Hood, L., W. R. Gray, W. R. Sanders, and W. J. Dreyer (1967). Light chain evolution. Cold Spring Harbor Symp., 32:133–146.CrossRefGoogle Scholar
  29. Lennox, E. S., and M. Cohn (1967). Immunoglobulins. Ann. Rev. of Biochem., 36(1), 365–406.CrossRefGoogle Scholar
  30. London, I. M., G. P. Bruns, and D. Karibian (1964). The regulation of hemoglobin synthesis and the pathogenesis of some hypochromic anemias. Medicine, 43(6), 789–802.PubMedCrossRefGoogle Scholar
  31. McClintock, B. (1965). The control of gene action in maize. Brookhaven Symposia in Biol., No. 18.Google Scholar
  32. Milstein, C., J. B. Clegg, and J. M. Jarvis (1967). C-terminal half of immunoglobulin λ chains. Nature, 214:270.PubMedCrossRefGoogle Scholar
  33. Milstein, C. (1966). Chemical structure of light chains. Roy. Soc. Discussion, 166:138–149.Google Scholar
  34. Nossal, G. J. V., K. Shortman, A. P. Miller, G. F. Mitchell, and S. Haskill (1967). The target cell in the induction of immunity and tolerance. Cold Spring Harbor Symp., 32:369–380.CrossRefGoogle Scholar
  35. Piggot, P. J., and E. M. Press (1967). Cyanogen bromide cleavage and partial sequence of the heavy chain of a pathological immunoglobulin G. Biochem. J., 104:616–626.PubMedGoogle Scholar
  36. Potter, M., W. J. Dreyer, E. L. Kuff, and K. R. McIntire (1964). Heritable variation in Bence Jones protein structure in an inbred strain of mice. J. Mol. Biol., 8:814–822.PubMedCrossRefGoogle Scholar
  37. Ropartz, C., L. Rivat, and P. Y. Rousseau (1962). Deux nouveaux facteurs des systemes hereditaires des gamma-globulins le Gm(e) et l’Inv(l). Proc. 9th Congress of the Internal. Soc. of Blood Transfusion, Mexico, p. 445.Google Scholar
  38. Sinsheimer, R. L., C. A. Hutchison III, and B. H. Lindqvist (1967). Bacteriophage φX174: Viral functions. In: The Molecular Biology of Viruses, J. S. Colter (ed.), Academic Press, New York.Google Scholar
  39. Smith, H. O., and M. Levine (1967). A phage P22 gene controlling integration of prophage. Virology, 31(2), 207–216.PubMedCrossRefGoogle Scholar
  40. Sperry, R. W. (1963). Chemoaffinity in the Growth of Nerve Fiber Patterns and Connections. Proc. Nat. Acad. Sci., 50(4), 703–710.PubMedCrossRefGoogle Scholar
  41. Sperry, R. W. (1965). Embryogenesis of behavioral nerve nets. In: Organogenesis. R. L. DeHaan and H. Ursprung (eds.), Holt, Rinehart & Winston, New York, pp. 161–186.Google Scholar
  42. Sterzl, J. (1967). Studies on the regulation of antibody synthesis. Cold Spring Harbor Symp., 32:493–506.CrossRefGoogle Scholar
  43. Suran, A. A., and B. W. Papermaster (1967). N-terminal sequence of heavy and light chains of leopard shark immunoglobulins: evolutionary implications. In press.Google Scholar
  44. Szilard, L. (1960). The molecular basis of antibody formation. Proc. Nat. Acad. Sci., 46:293.PubMedCrossRefGoogle Scholar
  45. Till, J. E., E. A. McCullock, and L. Siminovitch (1964). A stochastic model of stem cell proliferation based on the growth of spleen colony forming cells. Proc. Nat. Acad. Sci., 51:29.PubMedCrossRefGoogle Scholar
  46. Titani, K., E. Whitley, and F. W. Putnam (1966). Immunoglobulin structure: Variation in the sequence of Bence-Jones proteins. Science, 152:1513.PubMedCrossRefGoogle Scholar
  47. Titani, K., E. Whitley, L. Avogardo, and F. W. Putnam (1965). Immunoglobulins structure: partial amino acid sequence of a Bence-Jones protein. Science, 149:1090.PubMedCrossRefGoogle Scholar
  48. Titani, K., M. Wikler, and F. W. Putnam (1967). Evolution of immunoglobulins: structural homology of kappa and lambda Bence-Jones proteins. Science, 155:828.PubMedCrossRefGoogle Scholar
  49. Trinkaus, J. P. (1965). Mechanisms of morphogenetic movements. In: Organogenesis. R. L. DeHaan and R. Ursprung (eds.), Holt, Rinehart 8c Winston, New York.Google Scholar
  50. Tyler, A. (1946). An auto-antibody concept of cell structure, growth and differentiation. Growth, 10(suppl.), 7–19.Google Scholar
  51. Tyler, A. (1965). The biology and chemistry of fertilization. Amer. Naturalist, 99: 309–334.CrossRefGoogle Scholar
  52. Walsh, K., and H. Neurath (1964). Trypsinogen and chymotrypsinogen as homologous proteins. Proc. Nat. Acad. Sci., 52:884–889.PubMedCrossRefGoogle Scholar
  53. Weissman, I. L. (1967). Thymus cell migration. J. Exptl. Med., 126:291.CrossRefGoogle Scholar
  54. Wikler, M., K. Titani, T. Shinoda, and F. W. Putnam (1967). The complete amino acid sequence of a lambda type Bence-Jones protein. J. Biol. Chem., 242:1668.PubMedGoogle Scholar
  55. Wilkinson, J., E. M. Press, and R. R. Porter (1966). The N-terminal sequence of the heavy chain of rabbit immunoglobulin IgG. Biochem. J., 100:303.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1968

Authors and Affiliations

  • William J. Dreyer
    • 1
  • William R. Gray
    • 1
  1. 1.Norman W. Church Laboratory of Chemical BiologyDivision of Biology California Institute of TechnologyPasadenaUSA

Personalised recommendations