Cellular Phases of the Immune Response Following Immunization with Mammalian and Bacterial Ribosomes

  • M. C. Dodd
  • N. J. Bigley
Conference paper


With the avalanche of information concerning nucleic acids currently accumulating from many scientific disciplines, a more complete knowledge of the biological role of nucleic acids is evolving simultaneously. As immunologists, it is necessary to consider that any given animal host is actually a complete and functioning ecological unit of specialized cells, all of which were derived from one fertilized ovum. As yet, we are still uncertain as to what particular cells function as immunocompetent cells in maintaining the integrity of the animal in a continually changing environment. All somatic cells of a given individual in interphase supposedly contain the same genetic material (DNA) of which only a small portion is involved or “turned on” in the transcription of messenger RNA (Frenster, 1965). It is tempting to speculate that the “turning-on” and “turning-off” of genes might well be one physiological function of the host’s immune system. With this perspective, we wish to present a portion of our research experience in the immunization of experimental animals with mammalian and bacterial ribosomes.


Passive Transfer Blast Transformation Brucella Abortus Recipient Animal Bacterial Ribosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ada, G. L., G. J. V. Nossal, J. Pye, and A. Abbot (1963). Behaviour of active bacterial antigens during the induction of the immune response. (1) Properties of flagellar antigens from salmonella. Nature, 199:1257–1259.PubMedCrossRefGoogle Scholar
  2. Aldenderfer, P. H., M. C. Dodd, F. W. McCoy, and L. Liss (1963). Histologic changes in rabbits injected with homologous liver ribosomes and antiribosome serum. Federation Proc, 22:338.Google Scholar
  3. Askonas, B. A., and J. M. Rhodes (1965a). In “Molecular and Cellular Basis of Antibody Formation” (J. Sterzl et al., eds.), p. 503. Publishing House Czech. Acad. Sci., Prague (distrib., Academic Press, New York).Google Scholar
  4. Askonas, B. A., and J. M. Rhodes (1956). Immunogenicity of antigen-containing ribonucleic acid preparations from macrophages. Nature, 205:470–474.CrossRefGoogle Scholar
  5. Barbu, E., and J. Panijel (1960). Presence d’anticorps antiacid ribonucleique dans les immunserums antiribosomes. Compt. Rend. Acad. Sci., 250:1382–1384.Google Scholar
  6. Barbu, E., J. Panijel, and G. Quash (1961). Immunochemical characterization of ribosomes. Ann. Inst. Pasteur, 100:725–746.Google Scholar
  7. Barbu, E., G. Quash, and J. P. Dandeu (1963). Spécificité des anticorps anti-RNA. Ann. Inst. Pasteur, 105:849–865.Google Scholar
  8. Baron, S., and H. B. Levy (1966). Interferon. Ann. Rev. Microbiol., 20:291–318.Google Scholar
  9. Behrendt, H. (1957). Chemistry of erythrocytes, p. 69, Charles C. Thomas, Springfield, Ill.Google Scholar
  10. Beiser, S. M., and B. F. Erlanger (1966). Antibodies which react with nucleic acids. Cancer Res., 26:2012–2017.PubMedGoogle Scholar
  11. Bigley, N. J., M. C. Dodd, and V. B. Geyer (1963). The immunologic specificity of antibodies to liver ribosomes and nuclei. J. Immun., 90:416–423.PubMedGoogle Scholar
  12. Braun, W. (1966). Microbiological approaches to problems of antibody formation, Ohio Branch American Soc. for Microbiology, April 23.Google Scholar
  13. Braun, W., and L. J. Lasky (1967). Antibody formation in newborn mice initiated through adult macrophages. Federation Proc., 26:2162.Google Scholar
  14. Campbell, D. H., and J. S. Garvey (1963). Nature of retained antigen and its role in immune mechanisms. Adv. Immun., 3:261–313.CrossRefGoogle Scholar
  15. Cohen, C. (1958). Factors influencing isoimmunization in rabbits. Effect of early postnatal immunization of specific isoantibody response. Proc. Soc. Exptl. Biol. and Med., 99:607–610.Google Scholar
  16. Cohen, C. (1959). Anamnestic reactions in rabbits showing unresponsiveness to erythrocyte isoantigens. Transplant. Bull., 6:426–428.PubMedCrossRefGoogle Scholar
  17. Darner, J. C. (1965). The use of bentonite for the detection of antibodies in tolerant and immune rabbits. M.Sc. Thesis, Ohio State University.Google Scholar
  18. Dodd, M. C., N. J. Bigley, V. B. Geyer, F. W. McCoy, and H. E. Wilson (1962). Autoimmune response in rabbits injected with rat and rabbit liver ribosomes. Science, 137:688–689.PubMedCrossRefGoogle Scholar
  19. Dodd, M. C. (1963). Conference on the immunologic aspects, of rheumatoid arthritis and systemic lupus erythematosus, pp. 501–511, published by The Arthritis and Rheumatism Foundation in cooperation with The Nat. Inst. of Arthritis and Metabolic Diseases, PHS. Grune and Stratton, Inc., New York, N. Y.Google Scholar
  20. Dray, S. (1962). Effect of maternal isoantibodies on the quantitative expression of two allelic genes controlling γ-globulin allotypic specificities. Nature, 195:677–680.PubMedCrossRefGoogle Scholar
  21. Elberg, S. S. (1960). Cellular immunity. Bacteriol. Rev., 24:67–95.PubMedGoogle Scholar
  22. Everett, M. R. (1946). Medical Biochemistry, p. 517. Paul B. Hoeber, Inc., New York, N. Y.Google Scholar
  23. Fidalgo, B. V., and V. A. Najjar (1967). The physiological role of the lymphoid system. III. Leucophilic γ-globulin and the phagocytic activity of the polymorphonuclear leucocyte. Proc. Nat. Acad. Sci. U. S., 57:957–964.CrossRefGoogle Scholar
  24. Fishman, M. (1961). Antibody formation in vitro. J. Exptl. Med., 114:837–856.CrossRefGoogle Scholar
  25. Fishman, M., and F. L. Adler (1963). Antibody formation initiated in vitro. II. Antibody synthesis in x-irradiated recipients of diffusion chambers containing nucleic acid derived from macrophages incubated with antigen. J. Exptl. Med., 117:595–602.CrossRefGoogle Scholar
  26. Fishman, M., R. A. Hammerstrom, and V. P. Bond (1963). In vitro transfer of macrophage RNA to lymph node cells. Nature, 198:549–551.PubMedCrossRefGoogle Scholar
  27. Fishman, M., J. J. van Rood, and F. L. Adler (1965). In “Molecular and Cellular Basis of Antibody Formation” (J. Sterzl et al., eds.), p. 491. Publishing House of Czech. Acad. Sci., Prague (distrib., Academic Press, New York).Google Scholar
  28. Fishman, M. (1966). 1st Internat. Symposium—Immunity, Cancer and Chemotherapy. Buffalo, N. Y., Sept. 20–22.Google Scholar
  29. Fong, J., P. Schneider, and S. S. Elberg (1956). Studies of tubercle bacillus-monocyte relationship. I. Quantitative analysis of effect of serum of animals vaccinated with BCG upon bacterium-monocyte system. J. Exptl. Med., 104:455–465.CrossRefGoogle Scholar
  30. Fong, J., D. Chin, and S. S. Elberg (1961). Studies on tubercle bacillus-histiocyte relationship. V. Passive transfer of cellular resistance. J. Exptl. Med., 115:475–489.CrossRefGoogle Scholar
  31. Fong, J., D. Chin, and S. S. Elberg (1963). Studies of tubercle bacillus-histiocyte relationships. VI. Induction of cellular resistance by ribosomes and ribosomal RNA. J. Exptl. Med., 118:371–386.CrossRefGoogle Scholar
  32. Frenster, J. H. (1965). Mechanisms of repression and de-repression within interphase chromatin. In Vitro, 1:78–101.CrossRefGoogle Scholar
  33. Friedman, H. P., A. B. Stavitsky, and J. M. Solomon (1965). Induction in vitro of antibodies to phage T2: Antigens in the RNA extract employed. Science, 149:1106–1107.PubMedCrossRefGoogle Scholar
  34. Gaffar, A., N. J. Bigley, J. P. Minton, and M. C. Dodd (1967a). Serologic analysis of nuclear antigens from normal and malignant human tissues. Federation Proc, 26:753.Google Scholar
  35. Gaffar, A., N. J. Bigley, J. P. Minton, and M. C. Dodd (1967b). Immunochemical properties of nucleoprotein antigens from normal and malignant human tissues. Ph.D. Dissertation, Ohio State University.Google Scholar
  36. Garvey, J. S., D. V. Eitzman, and R. T. Smith (1960). The distribution of S35-labeled bovine serum albumin in newborn and immunologically tolerant adult rabbits. J. Exptl. Med., 112:533–549.CrossRefGoogle Scholar
  37. Gell, P. G. H., and S. Sell (1965). Studies of rabbit lymphocytes in vitro. II. Induction of blast transformation with antisera to six IgG allotypes and summation with mixtures of antisera to different allotypes. J. Exptl. Med., 122:813–821.CrossRefGoogle Scholar
  38. Hanan, R., and Oyama (1954). Inhibition of antibody formation in mature rabbits by contact with antigen at an early age. J. Immun., 73:49–53.PubMedGoogle Scholar
  39. Hatten, B. A., and S. E. Sulkin (1966a). Intracellular production of brucella L forms. I. Recovery of L forms from tissue culture cells infected with Brucella abortus. J. Bacteriol., 91:285–296.PubMedGoogle Scholar
  40. Hatten, B. A., and S. E. Sulkin (1966b). Intracellular production of brucella L forms. II. Induction and survival of Brucella abortus L forms in tissue culture. J. Bacteriol., 91:14–20.PubMedGoogle Scholar
  41. Holman, H. R. (1965). Systemic lupus erythematosus in “Immunologic Diseases.” (Eds.-M. Samter, H. L. Alexander, D. W. Talmage, B. Rose, W. B. Sherman, and J. H. Vaughan.) Little, Brown and Co., Boston.Google Scholar
  42. Jenkin, C. R., and D. Rowley (1964). The basis for immunity to mouse typhoid. II. Cell-bound antibody. Austral. J. Exptl. Biol. and Med. Sci., 42:237–248.CrossRefGoogle Scholar
  43. Kurent, J. E. (1967). The nucleotide nature of a common antigenicity existing in human erythrocytes and subcellular organelles. M.Sc. Thesis, Ohio State University.Google Scholar
  44. Larkin, G. F. (1966). Antibodies to RNA in the sera of individuals with rheumatoid arthritis. M.Sc. Thesis, Ohio State University.Google Scholar
  45. Lurie, M. B. (1932). The correlation between the histological changes and the fate of living tubercle bacilli in the organs of tuberculous rabbits. J. Exptl. Med., 55:31–54.CrossRefGoogle Scholar
  46. Lurie, M. B. (1938). Nature of inherited resistance to tuberculosis. Proc. Soc. Exptl. Biol. Med., 39:181–187.Google Scholar
  47. Lurie, M. B. (1942). Studies on the mechanism of immunity in tuberculosis. The fate of tubercle bacilli ingested by mononuclear phagocytes derived from normal and immunized animals. J. Exptl. Med., 75:247–268.CrossRefGoogle Scholar
  48. Lurie, M. B., and A. M. Davenport, Jr. (1965). Macrophage function in infectious disease with inbred rabbits. Bacteriol. Rev., 29:466–476.PubMedGoogle Scholar
  49. Mackaness, G. B. (1954). The growth of tubercle bacilli in monocytes from normal and vaccinated animals. Amer. Rev. Tuberc., 69:495–510.Google Scholar
  50. Mackaness, G. B. (1962). Cellular resistance to infection. J. Exptl. Med., 116:381–406.CrossRefGoogle Scholar
  51. Mackaness, G. B. (1964a). The immunologic basis of acquired cellular resistance. J. Exptl. Med., 120:105–109.CrossRefGoogle Scholar
  52. Mackaness, G. B. (1964b). The behaviour of microbial parasites in relation to phagocytic cells in vitro and in vivo. Fourteenth Symp. of The Soc. for Gen. Microbiol., 213–240, Cambridge University Press, Cambridge, England.Google Scholar
  53. Mage, R., and S. Dray (1965). Persistent altered phenotypic expression of altered γG-immunoglobulin allotypes in heterozygous rabbits exposed to isoantibodies in fetal and neonatal life. J. Immun., 95:525–535.PubMedGoogle Scholar
  54. Metchnikoff, E. (1893). Lectures on the Comparative Pathology of Inflammation. London.Google Scholar
  55. Metchnikoff, E. (1905). Immunity in Infective Disease. Cambridge Univ. Press, Cambridge, England.Google Scholar
  56. Miller, S. B. (1967). The effects of passive transfer of anti-RNA in unimmunized recipients. M.Sc. Thesis, Ohio State University.Google Scholar
  57. Pennell, R. B. (1964). In “Red Blood Cell”—A comprehensive treatise. Ed. Bishop, C., Academic Press, New York.Google Scholar
  58. Plescia, O. J., N. C. Palczuk, W. Braun, and E. Cora-Figueroa (1965a). Antibodies to DNA and a synthetic polydeoxyribonucleotide produced by oligodeoxyribonucleotides. Science, 148:1102–1103.CrossRefGoogle Scholar
  59. Plescia, O. J., N. C. Palczuk, E. Cora-Figueroa, A. Mukherjee, and W. Braun (1965b). Production of antibodies to soluble RNA (sRNA). Proc. Natl. Acad. Sci. U. S., 54:1281–1285.CrossRefGoogle Scholar
  60. Plescia, O. J., N. C. Palczuk, A. Mukherjee, and E. Cora-Figueroa (1965c). Production of antibodies to t-RNA. Federation Proc, 24:185.Google Scholar
  61. Plescia, O. J., and W. Braun (1967). Nucleic acids as antigens. Adv. Immun., 6:231–252.PubMedCrossRefGoogle Scholar
  62. Prankard, T. A. J. (1961). The red cell, p. 70. Charles C. Thomas, Springfield, Ill.Google Scholar
  63. Rosenkranz, H. S., B. F. Erlanger, S. W. Tannenbaum, and S. Beiser (1964). Purine- and pyrmidine-specific antibodies: Effect on the fertilized sea urchin egg. Science, 145:282–283.PubMedCrossRefGoogle Scholar
  64. Saha, A., J. S. Garvey, and D. H. Campbell (1964). The physico-chemical characterization of the ribonucleic acid-antigen complex persisting in the liver of immunized rabbits. Arch. Biochem. Biophys., 105:179–192.PubMedCrossRefGoogle Scholar
  65. Saito, K., and S. Mitsuhashi (1965a). Experimental salmonellosis. VI. In vitro transfer of cellular immunity of mouse mononuclear phagocytes. J. Bacteriol., 90:629–634.PubMedGoogle Scholar
  66. Saito, K., and S. Mitsuhashi (1965b). Experimental salmonellosis. VII. In vitro transfer of cellular immunity by a ribosomal fraction of mouse mononuclear phagocytes. J. Bacteriol., 90:1194–1199.Google Scholar
  67. Scheetz, II, M. E. (1965). Flocculation of sensitized particles by various human sera. M.Sc. Thesis, Ohio State University.Google Scholar
  68. Sela, M., H. Ungar-Waron, and X. Schechter (1964). Uridine-specific antibodies obtained with synthetic antigens. Proc. Natl. Acad. Sci. U. S., 52:285–292.CrossRefGoogle Scholar
  69. Sela, M., and H. Ungar-Waron (1965). Nucleoside-specific antibodies elicited by synthetic antigens. Federation Proc, 24:1438.Google Scholar
  70. Sela, M. (1966). Immunological studies with synthetic polypeptides. Adv. Immun., 5:29–129.PubMedCrossRefGoogle Scholar
  71. Sell, S., and P. G. H. Gell (1965a). Studies on rabbit lymphocytes in vivo. I. Stimulation of blast transformation with antiallotypic serum. J. Exptl. Med., 122:423–440.Google Scholar
  72. Sell, S., and P. G. H. Gell (1965b). Studies on rabbit lymphocytes in vitro. IV. Blast transformation of the lymphocytes from the newborn rabbit induced by antiallotype serum to a paternal IgG allotype not present in the lymphocytes donors. J. Exptl. Med., 122:923–942.CrossRefGoogle Scholar
  73. Sercarz, E. E., and A. H. Coons (1963). The absence of antibody-producing cells during unresponsiveness to BSA in the mouse. J. Immun., 90:478–491.PubMedGoogle Scholar
  74. Stavitsky, A. B., and J. P. Gusdon, Jr. (1966). Symposium on in vitro studies of the immune response. IV. Role of nucleic acids in the anamnestic antibody response. Bacteriol. Rev., 30:418–426.PubMedGoogle Scholar
  75. Suter, E. (1953). Multiplication of tubercle bacilli within mononuclear phagocytes in tissue cultures derived from normal animals and animals vaccinated with BCG. J. Exptl. Med., 97:235–255.CrossRefGoogle Scholar
  76. Tannenbaum, S., and S. Beiser (1963). Pyrimidine-specific antibodies which react with deoxyribonucleic acid (DNA). Proc. Natl. Acad. Sci. U. S., 49:662–668.CrossRefGoogle Scholar
  77. Terres, G., and W. L. Hughes (1959). Acquired immune tolerance in mice to crystalline bovine serum albumin. J. Immun., 83:459–467.PubMedGoogle Scholar
  78. Thor, D. E. (1967). Delayed hypersensitivity in man: A correlate in vitro and transfer by an RNA extract. Science, 157:1567–1569.PubMedCrossRefGoogle Scholar
  79. Trakatellis, A. C., A. E. Axelrod, M. Montjar, and F. Lamy (1964). Induction of immune tolerance with ribosomes and ribonucleic acid extracts in newborn mice. Nature, 202:154–157.PubMedCrossRefGoogle Scholar
  80. Troendly, B. C. (1967). A serologic comparison of the nucleic acid specificities of antisera to normal and malignant human ribosomes. M.Sc. Thesis, Ohio State University.Google Scholar
  81. Venneman, M. R. (1967). The nature of immunity in experimental salmonellosis. M.Sc. Thesis, Ohio State University.Google Scholar
  82. Youmans, A. S., and G. P. Youmans (1965a). Immunogenic activity of a ribosonal fraction obtained from Mycobacterium tuberculosis. J. Bacteriol., 89:1291–1298.PubMedGoogle Scholar
  83. Youmans, A. S., and G. P. Youmans (1965b). Nonspecific factors in resistance of mice to experimental tuberculosis. J. Bacteriol., 90:1675–1681.PubMedGoogle Scholar
  84. Youmans, A. S., and G. P. Youmans (1966a). Preparation of highly immunogenic ribosomal fractions of Mycobacterium tuberculosis by use of sodium dodecyl sulfate. J. Bacteriol., 91:2139–2145.PubMedGoogle Scholar
  85. Youmans, A. S., and G. P. Youmans (1966b). Effect of trypsin and ribonuclease on the immunogenic activity of ribosomes and ribonucleic acid isolated from Mycobacterium tuberculosis. J. Bacteriol., 91:2146–2154.PubMedGoogle Scholar
  86. Zatti, M., and R. Revoltella (1966). Tumor immunity in rats following injection of homologous ribosomes. Experentia, 15:467.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1968

Authors and Affiliations

  • M. C. Dodd
    • 1
  • N. J. Bigley
    • 1
  1. 1.Ohio State UniversityColumbusUSA

Personalised recommendations