Skip to main content

Noise Thermometry Using Josephson Junctions

  • Conference paper
Book cover Noise in Physical Systems

Part of the book series: Springer Series in Electrophysics ((SSEP,volume 2))

Abstract

As can be seen from the defining equation,

$$ \left. {\left\langle {V_n^2 (t)} \right.} \right\rangle = \int {4RkTd\nu } $$
(1)

thermal noise voltages, Vn(t), are so small that amplification must precede further electronic manipulation of Vn(t) (i.e., squaring and averaging) before a noise temperature can be measured. Unfortunately, room-temperature amplifiers contribute their own noise to the measured output of the complete circuit, thus rendering noise temperature measurements meaningless for temperatures where \( \left. {\left\langle {V_n^2 (t)} \right.} \right\rangle \) is less than the amplifier noise. Much of the amplifier noise can be eliminated, however, by using a more sophisticated technique consisting of cross-correlating the outputs of two identical amplifiers connected to the same resistor [1]. In this way temperatures as low as 2 K have recently been measured by KLEIN, KLEMPT and STORM even though the noise of each amplifier was equivalent to a much higher noise temperature [2]. This cross-correlation technique does not completely eliminate amplifier noise, however, so that even it ceases to be useful at temperatures equivalent to this residual noise. It has been very fortunate, therefore, that low-noise cryogenic amplifiers based on the Josephson effect have been available to extend noise thermometry far into the extreme cryogenic limit beyond the reach of the conventional techniques mentioned above. In fact, two distinct types of Josephson junction devices (often referred to generically as SQUIDs for Superconducting Quantum Interference Devices) have proven successful in measuring temperatures as low as a few millikelvins with amplifier noise equivalent to a noise temperature of 0.1 mK. This article will discuss both types, compare their performance and their most appropriate regimes of application, and the temperature scales developed with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Fink, Can. J. Phys. 37, 1397 (1959).

    Article  ADS  Google Scholar 

  2. N. H. Klein, G. Klempt, and L. Storm, Comite Consultatif de thermometric,11e Session, 1976, document CCT/76–12; and L. Storm, private communication.

    Google Scholar 

  3. R. A. Webb, R. P. Giffard, and J. C. Wheatley, J. Low Temp. Phys. 13, 383 (1973).

    Article  ADS  Google Scholar 

  4. R. P. Giffard, R. A. Webb, and J. C. Wheatley, J. Low Temp. Phys. 6, 533 (1972).

    Article  ADS  Google Scholar 

  5. R. A. Webb and J. C. Wheatley, Phys. Rev. Lett. 29, 1150 (1972).

    Article  ADS  Google Scholar 

  6. R. L. Collins, Phys. Lett. 61A, 71 (1977) and references contained therein.

    Article  ADS  Google Scholar 

  7. R. A. Webb, T. J. Greytak, R. T. Johnson, and J. C. Wheatley, Phys. Rev. Lett. 30, 210 (1973).

    Article  ADS  Google Scholar 

  8. S.H.E. Corporation, San Diego, Ca.

    Google Scholar 

  9. R. A. Kamper and M. B. Simmonds, Appl. Phys. Lett. 20, 270 (1972).

    Article  ADS  Google Scholar 

  10. See for example, J. Clarke, W. M. Goubau, and M. B. Ketchen, J. Low Temp. Phys. 25, 99 (1976).

    Article  ADS  Google Scholar 

  11. R. A. Kamper, in Proc. Symposium on the Physics of Superconducting Devices,Univ. of Virginia, Charlottesville, Virginia (1967) [available as document AD661848 from Nat. Tech. Info. Service, Springfield, Virginia, 22151], p. M-1.

    Google Scholar 

  12. R. A. Kamper and J. E. Zimmerman, J. Appl. Phys. 42, 132 (1971).

    Article  ADS  Google Scholar 

  13. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. C. Vessot, G. M. R. Winkler, NBS Tech. Note 394 (1970), U. S. Gov. Printing Office, Washington, D.C.

    Google Scholar 

  14. D. J. Scalapino, in Proc. Symposium on the Physics of Superconducting Devices,Univ. of Virginia, Charlottesville, Virginia (1967) [available as document AD661848 from Nat. Tech. Info. Service, Springfield, Virginia, 22151], p. G-17.

    Google Scholar 

  15. R. J. Soulen, Jr. and T. F. Finnegan, Rev. Phys. Appl. 9, 305 (1974).

    Article  Google Scholar 

  16. R. A. Kamper, in Superconductor Applications; SQUIDS and Machines,Ed. B. B. Schwartz and S. Foner (Plenum Press, New York, 1977) Chapter 5, P. 233. An error of a factor of two presented in previous publication is corrected therein.

    Google Scholar 

  17. J. E. Zimmerman and A. H. Silver, Phys. Rev. 167, 167 (1968).

    Article  Google Scholar 

  18. R. J. Soulen, Jr. and R. P. Giffard, to be published.

    Google Scholar 

  19. W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).

    Article  ADS  Google Scholar 

  20. D. C. McCumber, J. AppZ. Phys. 39, 3113 (1968).

    Article  ADS  Google Scholar 

  21. P. K. Hansma, J. Appl. Phys. 44, 4191 (1973).

    Article  ADS  Google Scholar 

  22. K. K. Likharev and V. K. Semenov, Zh ETF Pis. Red. 15, 625 (1972).

    ADS  Google Scholar 

  23. K. K. Likharev and V. K. Semenov, JETP Lett. 15, 442 (1972).

    ADS  Google Scholar 

  24. R. J. Soulen, Jr. and H. Marshak, in Proc. of 14th Int’l Conf. on Low Temp. Phys., Ed. M. Krusius and M. Vuorio, ( North-Holland, Amsterdam, 1975 ), Vol. 4, p. 60.

    Google Scholar 

  25. D. B. Utton, R. J. Soulen, Jr, and H. Marshak, ibid, p. 76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soulen, R.J. (1978). Noise Thermometry Using Josephson Junctions. In: Wolf, D. (eds) Noise in Physical Systems. Springer Series in Electrophysics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87640-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87640-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87642-4

  • Online ISBN: 978-3-642-87640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics